Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound from rare plant shows promise in treating breast cancer

02.02.2005


They started with a bare room and an idea. Now, after five years of painstaking, sophisticated tests, scientists at the University of Virginia Health System have discovered that a compound, derived from a rare South American plant, stops the growth of human breast cancer cells in laboratory cultures.



U. Va. Health System scientists Deborah Lannigan and Jeffrey Smith hope that, after further testing, their discovery could translate into a successful drug for the treatment of breast cancer. The disease is the second leading cancer killer of women in the U.S., according to the American Cancer Society, with an estimated 40,410 deaths.

The compound, called SL0101, comes from the plant Forsteronia refracta, a nondescript member of the dogbane family found in the Amazonian rain forest. The compound works like a key in a molecular lock. It inhibits the action of a cancer-linked protein called RSK, which the researchers discovered is important for controlling the growth of breast cancer cells. Interestingly, SL0101 does not alter the growth of normal breast cells. The discovery is detailed in the Feb. 1, 2005 issue of the journal Cancer Research and can be found online at: www.cancerres.aacrjournals.org.


"By preventing RSK from working, we completely stopped the growth of breast cancer cells but did not affect the growth of normal breast cells," said Lannigan, an Assistant Professor of Microbiology at the U. Va. Cancer Center. She compares this discovery to the development of the drug Gleevec for the treatment of chronic myeloid leukemia. Like Gleevec, SL0101 is a signal transduction inhibitor that interferes with the pathways that signal the growth of tumors. "Gleevec is an exciting discovery and we’re hoping to have similar success with SL0101," Lannigan said.

For now, Lannigan and Smith have begun testing the compound in animal models. "The next step is to see if SL0101 will prevent the growth of human tumor cells in mice," said Smith, a Research Assistant Professor of Pathology at the U.Va. Cancer Center. "We will modify the structure of SL0101, if necessary, to eventually find a compound that can be carried through to human clinical trials. That’s the goal. But human trials will likely be years down the road." The discovery of this potential anti-cancer compound at a U.Va. lab, Lannigan said, also highlights the important role of academic research in drug development.

The researchers collaborated on this discovery with a U.Va. Professor of Chemistry, Dr. Sidney Hecht, who maintains a large number of exotic plants collected by the National Cancer Institute in the 1960’s for research purposes. It took years of work to identify and characterize SL0101 as a specific RSK inhibitor. "Finding out that RSK is a good drug target for breast cancer is very exciting," Smith said.

Cancer patients themselves can also take credit for this discovery. A group of volunteers from "Patients and Friends of the U.Va. Cancer Center" provided funds at a crucial stage of the research.

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>