Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Are Muscle Proteins Doing in the Nucleus?

02.02.2005


The proteins actin and myosin have a firm place in the muscles where they are responsible for contraction. While recent investigations have shown that they are also found in the nucleus, it has been unclear to date just what they are doing there. Now an international team of investigators headed by Professor Dr. Ingrid Grummt, head of the Division of Molecular Biology of the Cell II of the Deutsches Krebsforschungszentrum (German Cancer Research Center, DKFZ), has shown that the muscle proteins in the nucleus are actively involved in transcription, i.e. the reading of genetic information.
“This is a breakthrough in molecular biology that revolutionizes our thinking about the transcription process,” said Ingrid Grummt. Jointly with investigators from Chicago, Prague, and Heidelberg, the scientist recently published an article in Nature Cell Biology* which has shattered a biological dogma that restricted the physiological role of the proteins actin and myosin to muscle contraction and their function as intracellular supporting elements.

The results are of fundamental relevance for cancer research, since the reading of genetic information and its translation into the cellular protein machine are essential for cell growth. In cancer cells, transcription activity is abnormally high, the cells are dividing uninhibited. “Once we learn to understand how this process is regulated in a normal cell, we will be able to investigate specifically what is going wrong in tumor cells and on this basis identify targets for therapeutic approaches,” Grummt explained.


While researchers had experimentally proven the presence of actin and myosin in nuclei before, a gene-regulatory function of these molecules has been fiercely debated. Grummt’s team has now been able to show that actin and myosin play an active role in the reading of genetic information called transcription. Using antibodies directed specifically against these proteins, the investigators blocked the transcription of genes that are needed for the production of ribosomes – the cellular protein synthesis devices. The antibody-induced blockage of transcription was reversed by adding the proteins. “The results suggest that the muscle proteins are associated directly with the key enzyme of transcription, RNA polymerase, and serve as a motor providing the energy required for RNA polymerase to dock to the right site and read the gene sequences.” Grummt favors the hypothesis that a complex of myosin and an essential transcription factor binds to RNA polymerase and thus causes a structural change in the polymerase. Actin seems to influence both the start and the further process of transcription. Altogether, actin and myosin appear to be central switching elements of transcription in the nucleus.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>