Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Are Muscle Proteins Doing in the Nucleus?

02.02.2005


The proteins actin and myosin have a firm place in the muscles where they are responsible for contraction. While recent investigations have shown that they are also found in the nucleus, it has been unclear to date just what they are doing there. Now an international team of investigators headed by Professor Dr. Ingrid Grummt, head of the Division of Molecular Biology of the Cell II of the Deutsches Krebsforschungszentrum (German Cancer Research Center, DKFZ), has shown that the muscle proteins in the nucleus are actively involved in transcription, i.e. the reading of genetic information.
“This is a breakthrough in molecular biology that revolutionizes our thinking about the transcription process,” said Ingrid Grummt. Jointly with investigators from Chicago, Prague, and Heidelberg, the scientist recently published an article in Nature Cell Biology* which has shattered a biological dogma that restricted the physiological role of the proteins actin and myosin to muscle contraction and their function as intracellular supporting elements.

The results are of fundamental relevance for cancer research, since the reading of genetic information and its translation into the cellular protein machine are essential for cell growth. In cancer cells, transcription activity is abnormally high, the cells are dividing uninhibited. “Once we learn to understand how this process is regulated in a normal cell, we will be able to investigate specifically what is going wrong in tumor cells and on this basis identify targets for therapeutic approaches,” Grummt explained.


While researchers had experimentally proven the presence of actin and myosin in nuclei before, a gene-regulatory function of these molecules has been fiercely debated. Grummt’s team has now been able to show that actin and myosin play an active role in the reading of genetic information called transcription. Using antibodies directed specifically against these proteins, the investigators blocked the transcription of genes that are needed for the production of ribosomes – the cellular protein synthesis devices. The antibody-induced blockage of transcription was reversed by adding the proteins. “The results suggest that the muscle proteins are associated directly with the key enzyme of transcription, RNA polymerase, and serve as a motor providing the energy required for RNA polymerase to dock to the right site and read the gene sequences.” Grummt favors the hypothesis that a complex of myosin and an essential transcription factor binds to RNA polymerase and thus causes a structural change in the polymerase. Actin seems to influence both the start and the further process of transcription. Altogether, actin and myosin appear to be central switching elements of transcription in the nucleus.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>