Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Are Muscle Proteins Doing in the Nucleus?

02.02.2005


The proteins actin and myosin have a firm place in the muscles where they are responsible for contraction. While recent investigations have shown that they are also found in the nucleus, it has been unclear to date just what they are doing there. Now an international team of investigators headed by Professor Dr. Ingrid Grummt, head of the Division of Molecular Biology of the Cell II of the Deutsches Krebsforschungszentrum (German Cancer Research Center, DKFZ), has shown that the muscle proteins in the nucleus are actively involved in transcription, i.e. the reading of genetic information.
“This is a breakthrough in molecular biology that revolutionizes our thinking about the transcription process,” said Ingrid Grummt. Jointly with investigators from Chicago, Prague, and Heidelberg, the scientist recently published an article in Nature Cell Biology* which has shattered a biological dogma that restricted the physiological role of the proteins actin and myosin to muscle contraction and their function as intracellular supporting elements.

The results are of fundamental relevance for cancer research, since the reading of genetic information and its translation into the cellular protein machine are essential for cell growth. In cancer cells, transcription activity is abnormally high, the cells are dividing uninhibited. “Once we learn to understand how this process is regulated in a normal cell, we will be able to investigate specifically what is going wrong in tumor cells and on this basis identify targets for therapeutic approaches,” Grummt explained.


While researchers had experimentally proven the presence of actin and myosin in nuclei before, a gene-regulatory function of these molecules has been fiercely debated. Grummt’s team has now been able to show that actin and myosin play an active role in the reading of genetic information called transcription. Using antibodies directed specifically against these proteins, the investigators blocked the transcription of genes that are needed for the production of ribosomes – the cellular protein synthesis devices. The antibody-induced blockage of transcription was reversed by adding the proteins. “The results suggest that the muscle proteins are associated directly with the key enzyme of transcription, RNA polymerase, and serve as a motor providing the energy required for RNA polymerase to dock to the right site and read the gene sequences.” Grummt favors the hypothesis that a complex of myosin and an essential transcription factor binds to RNA polymerase and thus causes a structural change in the polymerase. Actin seems to influence both the start and the further process of transcription. Altogether, actin and myosin appear to be central switching elements of transcription in the nucleus.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Scientists discover species of dolphin that existed along South Carolina coast
24.08.2017 | New York Institute of Technology

nachricht The science of fluoride flipping
24.08.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>