Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Are Muscle Proteins Doing in the Nucleus?

02.02.2005


The proteins actin and myosin have a firm place in the muscles where they are responsible for contraction. While recent investigations have shown that they are also found in the nucleus, it has been unclear to date just what they are doing there. Now an international team of investigators headed by Professor Dr. Ingrid Grummt, head of the Division of Molecular Biology of the Cell II of the Deutsches Krebsforschungszentrum (German Cancer Research Center, DKFZ), has shown that the muscle proteins in the nucleus are actively involved in transcription, i.e. the reading of genetic information.
“This is a breakthrough in molecular biology that revolutionizes our thinking about the transcription process,” said Ingrid Grummt. Jointly with investigators from Chicago, Prague, and Heidelberg, the scientist recently published an article in Nature Cell Biology* which has shattered a biological dogma that restricted the physiological role of the proteins actin and myosin to muscle contraction and their function as intracellular supporting elements.

The results are of fundamental relevance for cancer research, since the reading of genetic information and its translation into the cellular protein machine are essential for cell growth. In cancer cells, transcription activity is abnormally high, the cells are dividing uninhibited. “Once we learn to understand how this process is regulated in a normal cell, we will be able to investigate specifically what is going wrong in tumor cells and on this basis identify targets for therapeutic approaches,” Grummt explained.


While researchers had experimentally proven the presence of actin and myosin in nuclei before, a gene-regulatory function of these molecules has been fiercely debated. Grummt’s team has now been able to show that actin and myosin play an active role in the reading of genetic information called transcription. Using antibodies directed specifically against these proteins, the investigators blocked the transcription of genes that are needed for the production of ribosomes – the cellular protein synthesis devices. The antibody-induced blockage of transcription was reversed by adding the proteins. “The results suggest that the muscle proteins are associated directly with the key enzyme of transcription, RNA polymerase, and serve as a motor providing the energy required for RNA polymerase to dock to the right site and read the gene sequences.” Grummt favors the hypothesis that a complex of myosin and an essential transcription factor binds to RNA polymerase and thus causes a structural change in the polymerase. Actin seems to influence both the start and the further process of transcription. Altogether, actin and myosin appear to be central switching elements of transcription in the nucleus.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>