Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Are Muscle Proteins Doing in the Nucleus?

02.02.2005


The proteins actin and myosin have a firm place in the muscles where they are responsible for contraction. While recent investigations have shown that they are also found in the nucleus, it has been unclear to date just what they are doing there. Now an international team of investigators headed by Professor Dr. Ingrid Grummt, head of the Division of Molecular Biology of the Cell II of the Deutsches Krebsforschungszentrum (German Cancer Research Center, DKFZ), has shown that the muscle proteins in the nucleus are actively involved in transcription, i.e. the reading of genetic information.
“This is a breakthrough in molecular biology that revolutionizes our thinking about the transcription process,” said Ingrid Grummt. Jointly with investigators from Chicago, Prague, and Heidelberg, the scientist recently published an article in Nature Cell Biology* which has shattered a biological dogma that restricted the physiological role of the proteins actin and myosin to muscle contraction and their function as intracellular supporting elements.

The results are of fundamental relevance for cancer research, since the reading of genetic information and its translation into the cellular protein machine are essential for cell growth. In cancer cells, transcription activity is abnormally high, the cells are dividing uninhibited. “Once we learn to understand how this process is regulated in a normal cell, we will be able to investigate specifically what is going wrong in tumor cells and on this basis identify targets for therapeutic approaches,” Grummt explained.


While researchers had experimentally proven the presence of actin and myosin in nuclei before, a gene-regulatory function of these molecules has been fiercely debated. Grummt’s team has now been able to show that actin and myosin play an active role in the reading of genetic information called transcription. Using antibodies directed specifically against these proteins, the investigators blocked the transcription of genes that are needed for the production of ribosomes – the cellular protein synthesis devices. The antibody-induced blockage of transcription was reversed by adding the proteins. “The results suggest that the muscle proteins are associated directly with the key enzyme of transcription, RNA polymerase, and serve as a motor providing the energy required for RNA polymerase to dock to the right site and read the gene sequences.” Grummt favors the hypothesis that a complex of myosin and an essential transcription factor binds to RNA polymerase and thus causes a structural change in the polymerase. Actin seems to influence both the start and the further process of transcription. Altogether, actin and myosin appear to be central switching elements of transcription in the nucleus.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>