Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover ’reading’ molecule at Reading

02.02.2005


A team of chemists at the University of Reading, led by Professor Howard Colquhoun, have designed a system in which a tweezer-like molecule is able to recognise specific monomer sequences in a linear copolymer. As a result, and for the first time ever, sequence-information in a synthetic polymer has been ‘read’ by a mechanism which mirrors one of the processes on which life itself is based.



The discovery is described in two papers: Recognition of polyimide sequence information by a molecular tweezer (H.M. Colquhoun and Z. Zhu, Angewandte Chemie, International Edition, 2004, Issue 38, p. 5040) and Principles of sequence-recognition in aromatic polyimides (H.M. Colquhoun, Z. Zhu, C.J. Cardin and Y. Gan, Chemical Communications, 2004, Issue 23, p. 2650). These journals are regarded worldwide as the most important media for the publication of urgent communications on important new developments in the chemical sciences.

Professor Colquhoun and his colleague Dr Zhu designed the ‘tweezer’ so that it binds at particular sites along the polymer chain – namely, at the sequences which complement its own structure most closely. The researchers then used spectroscopic methods to show that the molecular tweezer can bind bind at both adjacent and non-adjacent sites along the polymer chain. From this evidence, the specific sequences present within the copolymer, which is made of several different structural units, could be clearly identified. A full and detailed picture of the way in which the tweezer binds to the polymer chain was finally obtained when Dr Zhu obtained crystals of a complex between the tweezer and a model oligomer and their structure was determined by Dr Cardin and Ms Gan.


“This is a unique system in which sequence-information in a polymer chain can be ‘read’ through sequence-selective interactions with small molecules,” said Professor Colquhoun. “As such, we believe that the ‘tweezer’ will represent a significant contribution to the eventual development of ultra-miniaturised information-storage and processing at the molecular level.

“Moreover, the principles of sequence-recognition emerging from this entirely synthetic system could help us develop an understanding of the way in which biological information-processing may have originated some three billion years ago. A paradoxical feature of information theory is that polymers with entirely random sequences (as in the copolymers we are working with) contain more potential information than any other type of polymer. Indeed, DNA itself appears at first sight to be an entirely random copolymer, in the sense that there are no rules governing the sequence of the bases. The sequence acquires meaning only though the operation of the genetic code, which is itself based on sequence-specific binding of small molecules to polymer chains. This observation, together with our own results, lead one to speculate that the earliest biological sequence-information may have originated as a (natural) selection from random monomer sequences occurring in a population of replicating co-polymers.”

In the future, the researchers hope to modify the tweezer so as to promote reaction between neighbouring molecules when these are bound to the polymer. This would mimic biological information-processing to an even greater extent, as sequence-information would then be copied into an entirely different type of molecule.

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>