Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover ’reading’ molecule at Reading

02.02.2005


A team of chemists at the University of Reading, led by Professor Howard Colquhoun, have designed a system in which a tweezer-like molecule is able to recognise specific monomer sequences in a linear copolymer. As a result, and for the first time ever, sequence-information in a synthetic polymer has been ‘read’ by a mechanism which mirrors one of the processes on which life itself is based.



The discovery is described in two papers: Recognition of polyimide sequence information by a molecular tweezer (H.M. Colquhoun and Z. Zhu, Angewandte Chemie, International Edition, 2004, Issue 38, p. 5040) and Principles of sequence-recognition in aromatic polyimides (H.M. Colquhoun, Z. Zhu, C.J. Cardin and Y. Gan, Chemical Communications, 2004, Issue 23, p. 2650). These journals are regarded worldwide as the most important media for the publication of urgent communications on important new developments in the chemical sciences.

Professor Colquhoun and his colleague Dr Zhu designed the ‘tweezer’ so that it binds at particular sites along the polymer chain – namely, at the sequences which complement its own structure most closely. The researchers then used spectroscopic methods to show that the molecular tweezer can bind bind at both adjacent and non-adjacent sites along the polymer chain. From this evidence, the specific sequences present within the copolymer, which is made of several different structural units, could be clearly identified. A full and detailed picture of the way in which the tweezer binds to the polymer chain was finally obtained when Dr Zhu obtained crystals of a complex between the tweezer and a model oligomer and their structure was determined by Dr Cardin and Ms Gan.


“This is a unique system in which sequence-information in a polymer chain can be ‘read’ through sequence-selective interactions with small molecules,” said Professor Colquhoun. “As such, we believe that the ‘tweezer’ will represent a significant contribution to the eventual development of ultra-miniaturised information-storage and processing at the molecular level.

“Moreover, the principles of sequence-recognition emerging from this entirely synthetic system could help us develop an understanding of the way in which biological information-processing may have originated some three billion years ago. A paradoxical feature of information theory is that polymers with entirely random sequences (as in the copolymers we are working with) contain more potential information than any other type of polymer. Indeed, DNA itself appears at first sight to be an entirely random copolymer, in the sense that there are no rules governing the sequence of the bases. The sequence acquires meaning only though the operation of the genetic code, which is itself based on sequence-specific binding of small molecules to polymer chains. This observation, together with our own results, lead one to speculate that the earliest biological sequence-information may have originated as a (natural) selection from random monomer sequences occurring in a population of replicating co-polymers.”

In the future, the researchers hope to modify the tweezer so as to promote reaction between neighbouring molecules when these are bound to the polymer. This would mimic biological information-processing to an even greater extent, as sequence-information would then be copied into an entirely different type of molecule.

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>