Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover ’reading’ molecule at Reading

02.02.2005


A team of chemists at the University of Reading, led by Professor Howard Colquhoun, have designed a system in which a tweezer-like molecule is able to recognise specific monomer sequences in a linear copolymer. As a result, and for the first time ever, sequence-information in a synthetic polymer has been ‘read’ by a mechanism which mirrors one of the processes on which life itself is based.



The discovery is described in two papers: Recognition of polyimide sequence information by a molecular tweezer (H.M. Colquhoun and Z. Zhu, Angewandte Chemie, International Edition, 2004, Issue 38, p. 5040) and Principles of sequence-recognition in aromatic polyimides (H.M. Colquhoun, Z. Zhu, C.J. Cardin and Y. Gan, Chemical Communications, 2004, Issue 23, p. 2650). These journals are regarded worldwide as the most important media for the publication of urgent communications on important new developments in the chemical sciences.

Professor Colquhoun and his colleague Dr Zhu designed the ‘tweezer’ so that it binds at particular sites along the polymer chain – namely, at the sequences which complement its own structure most closely. The researchers then used spectroscopic methods to show that the molecular tweezer can bind bind at both adjacent and non-adjacent sites along the polymer chain. From this evidence, the specific sequences present within the copolymer, which is made of several different structural units, could be clearly identified. A full and detailed picture of the way in which the tweezer binds to the polymer chain was finally obtained when Dr Zhu obtained crystals of a complex between the tweezer and a model oligomer and their structure was determined by Dr Cardin and Ms Gan.


“This is a unique system in which sequence-information in a polymer chain can be ‘read’ through sequence-selective interactions with small molecules,” said Professor Colquhoun. “As such, we believe that the ‘tweezer’ will represent a significant contribution to the eventual development of ultra-miniaturised information-storage and processing at the molecular level.

“Moreover, the principles of sequence-recognition emerging from this entirely synthetic system could help us develop an understanding of the way in which biological information-processing may have originated some three billion years ago. A paradoxical feature of information theory is that polymers with entirely random sequences (as in the copolymers we are working with) contain more potential information than any other type of polymer. Indeed, DNA itself appears at first sight to be an entirely random copolymer, in the sense that there are no rules governing the sequence of the bases. The sequence acquires meaning only though the operation of the genetic code, which is itself based on sequence-specific binding of small molecules to polymer chains. This observation, together with our own results, lead one to speculate that the earliest biological sequence-information may have originated as a (natural) selection from random monomer sequences occurring in a population of replicating co-polymers.”

In the future, the researchers hope to modify the tweezer so as to promote reaction between neighbouring molecules when these are bound to the polymer. This would mimic biological information-processing to an even greater extent, as sequence-information would then be copied into an entirely different type of molecule.

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Life Sciences:

nachricht Scientists discover species of dolphin that existed along South Carolina coast
24.08.2017 | New York Institute of Technology

nachricht The science of fluoride flipping
24.08.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>