Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new genes necessary to make embryo

01.02.2005


Researchers at New York University and the medical schools at Harvard and Yale universities have identified new genes necessary for embryonic development, according to findings published in the latest issue of Genome Research. This discovery is an important step toward a complete mapping of which parts of the genome are required for embryonic development. The new findings also probe into how genetic networks are built and how they could evolve.



The team, headed by biologists at NYU, is studying the genome of the Caenorhabditis elegans (C. elegans), the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. Using RNA interference (RNAi), a method for identifying the function of genes, the researchers almost double previous estimates of how many genes are required to make an embryo. Their study focused on the genes expressed by the mother and imparted to the egg, ready to be used during the earliest stages after fertilization. They discovered over 150 additional genes required to make an embryo beyond what was previously known, leading them to conclude that many more genes will be found in the future. The researchers estimate that at least 2,600 genes are required for embryonic development in C. elegans, of which about 70% are currently known.

The majority of genes required for embryogenesis in C. elegans have counterparts in humans whose roles are often unknown. For example, human counterparts of four of the newly identified genes are known to be associated somehow with disease, and mutations in two of these are associated with tumors. The C. elegans study suggests specific cellular roles for these genes, thus providing important clues to how these genes work in humans.


The new data also asked allowed the researchers to have a first genome-wide look at a classic genetic phenomenon called "partial penetrance" – whereby the same genetic mutations may elicit different results in different individuals.

"The results from the analyses of genes showing partial penetrance suggest the possibility of a general architectural motif in genetic networks," said Fabio Piano, an NYU biologist and lead author of the study, "in which genes in critical positions consist largely of older components while new functions added later provide additional layers of regulation to lend adaptive functions to these core networks."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>