Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new genes necessary to make embryo

01.02.2005


Researchers at New York University and the medical schools at Harvard and Yale universities have identified new genes necessary for embryonic development, according to findings published in the latest issue of Genome Research. This discovery is an important step toward a complete mapping of which parts of the genome are required for embryonic development. The new findings also probe into how genetic networks are built and how they could evolve.



The team, headed by biologists at NYU, is studying the genome of the Caenorhabditis elegans (C. elegans), the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. Using RNA interference (RNAi), a method for identifying the function of genes, the researchers almost double previous estimates of how many genes are required to make an embryo. Their study focused on the genes expressed by the mother and imparted to the egg, ready to be used during the earliest stages after fertilization. They discovered over 150 additional genes required to make an embryo beyond what was previously known, leading them to conclude that many more genes will be found in the future. The researchers estimate that at least 2,600 genes are required for embryonic development in C. elegans, of which about 70% are currently known.

The majority of genes required for embryogenesis in C. elegans have counterparts in humans whose roles are often unknown. For example, human counterparts of four of the newly identified genes are known to be associated somehow with disease, and mutations in two of these are associated with tumors. The C. elegans study suggests specific cellular roles for these genes, thus providing important clues to how these genes work in humans.


The new data also asked allowed the researchers to have a first genome-wide look at a classic genetic phenomenon called "partial penetrance" – whereby the same genetic mutations may elicit different results in different individuals.

"The results from the analyses of genes showing partial penetrance suggest the possibility of a general architectural motif in genetic networks," said Fabio Piano, an NYU biologist and lead author of the study, "in which genes in critical positions consist largely of older components while new functions added later provide additional layers of regulation to lend adaptive functions to these core networks."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>