Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new genes necessary to make embryo

01.02.2005


Researchers at New York University and the medical schools at Harvard and Yale universities have identified new genes necessary for embryonic development, according to findings published in the latest issue of Genome Research. This discovery is an important step toward a complete mapping of which parts of the genome are required for embryonic development. The new findings also probe into how genetic networks are built and how they could evolve.



The team, headed by biologists at NYU, is studying the genome of the Caenorhabditis elegans (C. elegans), the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. Using RNA interference (RNAi), a method for identifying the function of genes, the researchers almost double previous estimates of how many genes are required to make an embryo. Their study focused on the genes expressed by the mother and imparted to the egg, ready to be used during the earliest stages after fertilization. They discovered over 150 additional genes required to make an embryo beyond what was previously known, leading them to conclude that many more genes will be found in the future. The researchers estimate that at least 2,600 genes are required for embryonic development in C. elegans, of which about 70% are currently known.

The majority of genes required for embryogenesis in C. elegans have counterparts in humans whose roles are often unknown. For example, human counterparts of four of the newly identified genes are known to be associated somehow with disease, and mutations in two of these are associated with tumors. The C. elegans study suggests specific cellular roles for these genes, thus providing important clues to how these genes work in humans.


The new data also asked allowed the researchers to have a first genome-wide look at a classic genetic phenomenon called "partial penetrance" – whereby the same genetic mutations may elicit different results in different individuals.

"The results from the analyses of genes showing partial penetrance suggest the possibility of a general architectural motif in genetic networks," said Fabio Piano, an NYU biologist and lead author of the study, "in which genes in critical positions consist largely of older components while new functions added later provide additional layers of regulation to lend adaptive functions to these core networks."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>