Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glow-in-the-dark zebrafish at UH hold keys to biological clocks

01.02.2005


Professor Gregory M. Cahill’s research illuminates a ’first’ in this species

Using genetically altered zebrafish that glow in the dark, University of Houston researchers have found new tools that shed light upon biological clock cycles. Gregory M. Cahill, associate professor of biology and biochemistry at UH, and Maki Kaneko, a fellow UH researcher who is now at the University of California-San Diego, presented their findings in a paper titled "Light-dependent Development of Circadian Gene Expression in Transgenic Zebrafish," appearing Feb. 1 in the Public Library of Science’s PLoS Biology, an online journal that, along with PLoS Medical, is committed to making scientific and medical literature a public resource.

"By injecting the luc gene that makes fireflies glow into our zebrafish, our bottom-line finding goes back to nature versus nurture," Cahill said. "We found that these per3-luc zebrafish contain something in their genetic makeup that gets their clocks ticking without parental influence, however, we determined that it does take some sort of environmental input for the clock to start. In this case it was exposure to light/dark cycles after the fourth day of development, about the age when the fish start to swim and feed."



The researchers used zebrafish (danio rerio) because they yield such a high output of spawn, with hundreds of eggs being laid by each female per week. This gives the scientists a better chance of identifying mutant fish whose biological clocks run fast or slow, providing the ability to trace the specific genes that create the anomaly. Putting UH a bit ahead of other institutions engaged in this type of research, Cahill and his team will be able to analyze more than 2,000 zebrafish per week. The per3-luc zebrafish is the first vertebrate system available for this level of high-throughput measurement.

"Because we can test so many zebrafish at a time, the one in a thousand odds of finding a mutant are more easily and efficiently attainable," Cahill said. "Ultimately, this type of research can help with tracing why humans develop such things as sleep disorders or mental illnesses like depression."

Per3 is the naturally occurring clock-regulated gene. The protein that it encodes is produced at highest levels near dawn, and when the luc gene is inserted into it, the luciferase protein is produced in a similar way. The result is that these fish glow rhythmically, emitting more light during the day than during the night. The amount of light is below the level of detection by the human eye, but it is easily measured with an instrument called a luminometer.

"This has given us the tool we need to find other parts of systems that influence biological clocks," Cahill said. "We are optimistic that this will shed light upon such things as reproduction in other light-dependent animals."

These findings have laid the groundwork for further study along these lines. With a team now built, UH graduate students who assisted with this project are now trained to work with Cahill to implement the next steps of this research.

Prior to coming to UH in 1994, Cahill was a research assistant professor in the Department of Anatomy and Cell biology at the University of Kansas Medical Center in Kansas City and received his postdoctoral training at Emory University. He received his doctorate in biology and neuroscience from the University of Oregon in Eugene, where he studied the mechanisms of circadian responses to light. He graduated with his bachelor of science from the College of Biological Sciences at the University of Minnesota in Minneapolis/St. Paul. His research interests include molecular, cellular and physiological mechanisms of vertebrate circadian rhythmicity, photoreceptor cell and molecular biology, and neurobiology. He is a member of the Society for Research on Biological Rhythms and the Society for Neuroscience and is currently funded under a $1.2 million National Institutes of Health grant through 2007 as the principal investigator on "Genetic analysis of zebrafish circadian rhythmicity," under which this latest study falls.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>