Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glow-in-the-dark zebrafish at UH hold keys to biological clocks

01.02.2005


Professor Gregory M. Cahill’s research illuminates a ’first’ in this species

Using genetically altered zebrafish that glow in the dark, University of Houston researchers have found new tools that shed light upon biological clock cycles. Gregory M. Cahill, associate professor of biology and biochemistry at UH, and Maki Kaneko, a fellow UH researcher who is now at the University of California-San Diego, presented their findings in a paper titled "Light-dependent Development of Circadian Gene Expression in Transgenic Zebrafish," appearing Feb. 1 in the Public Library of Science’s PLoS Biology, an online journal that, along with PLoS Medical, is committed to making scientific and medical literature a public resource.

"By injecting the luc gene that makes fireflies glow into our zebrafish, our bottom-line finding goes back to nature versus nurture," Cahill said. "We found that these per3-luc zebrafish contain something in their genetic makeup that gets their clocks ticking without parental influence, however, we determined that it does take some sort of environmental input for the clock to start. In this case it was exposure to light/dark cycles after the fourth day of development, about the age when the fish start to swim and feed."



The researchers used zebrafish (danio rerio) because they yield such a high output of spawn, with hundreds of eggs being laid by each female per week. This gives the scientists a better chance of identifying mutant fish whose biological clocks run fast or slow, providing the ability to trace the specific genes that create the anomaly. Putting UH a bit ahead of other institutions engaged in this type of research, Cahill and his team will be able to analyze more than 2,000 zebrafish per week. The per3-luc zebrafish is the first vertebrate system available for this level of high-throughput measurement.

"Because we can test so many zebrafish at a time, the one in a thousand odds of finding a mutant are more easily and efficiently attainable," Cahill said. "Ultimately, this type of research can help with tracing why humans develop such things as sleep disorders or mental illnesses like depression."

Per3 is the naturally occurring clock-regulated gene. The protein that it encodes is produced at highest levels near dawn, and when the luc gene is inserted into it, the luciferase protein is produced in a similar way. The result is that these fish glow rhythmically, emitting more light during the day than during the night. The amount of light is below the level of detection by the human eye, but it is easily measured with an instrument called a luminometer.

"This has given us the tool we need to find other parts of systems that influence biological clocks," Cahill said. "We are optimistic that this will shed light upon such things as reproduction in other light-dependent animals."

These findings have laid the groundwork for further study along these lines. With a team now built, UH graduate students who assisted with this project are now trained to work with Cahill to implement the next steps of this research.

Prior to coming to UH in 1994, Cahill was a research assistant professor in the Department of Anatomy and Cell biology at the University of Kansas Medical Center in Kansas City and received his postdoctoral training at Emory University. He received his doctorate in biology and neuroscience from the University of Oregon in Eugene, where he studied the mechanisms of circadian responses to light. He graduated with his bachelor of science from the College of Biological Sciences at the University of Minnesota in Minneapolis/St. Paul. His research interests include molecular, cellular and physiological mechanisms of vertebrate circadian rhythmicity, photoreceptor cell and molecular biology, and neurobiology. He is a member of the Society for Research on Biological Rhythms and the Society for Neuroscience and is currently funded under a $1.2 million National Institutes of Health grant through 2007 as the principal investigator on "Genetic analysis of zebrafish circadian rhythmicity," under which this latest study falls.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>