Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glow-in-the-dark zebrafish at UH hold keys to biological clocks

01.02.2005


Professor Gregory M. Cahill’s research illuminates a ’first’ in this species

Using genetically altered zebrafish that glow in the dark, University of Houston researchers have found new tools that shed light upon biological clock cycles. Gregory M. Cahill, associate professor of biology and biochemistry at UH, and Maki Kaneko, a fellow UH researcher who is now at the University of California-San Diego, presented their findings in a paper titled "Light-dependent Development of Circadian Gene Expression in Transgenic Zebrafish," appearing Feb. 1 in the Public Library of Science’s PLoS Biology, an online journal that, along with PLoS Medical, is committed to making scientific and medical literature a public resource.

"By injecting the luc gene that makes fireflies glow into our zebrafish, our bottom-line finding goes back to nature versus nurture," Cahill said. "We found that these per3-luc zebrafish contain something in their genetic makeup that gets their clocks ticking without parental influence, however, we determined that it does take some sort of environmental input for the clock to start. In this case it was exposure to light/dark cycles after the fourth day of development, about the age when the fish start to swim and feed."



The researchers used zebrafish (danio rerio) because they yield such a high output of spawn, with hundreds of eggs being laid by each female per week. This gives the scientists a better chance of identifying mutant fish whose biological clocks run fast or slow, providing the ability to trace the specific genes that create the anomaly. Putting UH a bit ahead of other institutions engaged in this type of research, Cahill and his team will be able to analyze more than 2,000 zebrafish per week. The per3-luc zebrafish is the first vertebrate system available for this level of high-throughput measurement.

"Because we can test so many zebrafish at a time, the one in a thousand odds of finding a mutant are more easily and efficiently attainable," Cahill said. "Ultimately, this type of research can help with tracing why humans develop such things as sleep disorders or mental illnesses like depression."

Per3 is the naturally occurring clock-regulated gene. The protein that it encodes is produced at highest levels near dawn, and when the luc gene is inserted into it, the luciferase protein is produced in a similar way. The result is that these fish glow rhythmically, emitting more light during the day than during the night. The amount of light is below the level of detection by the human eye, but it is easily measured with an instrument called a luminometer.

"This has given us the tool we need to find other parts of systems that influence biological clocks," Cahill said. "We are optimistic that this will shed light upon such things as reproduction in other light-dependent animals."

These findings have laid the groundwork for further study along these lines. With a team now built, UH graduate students who assisted with this project are now trained to work with Cahill to implement the next steps of this research.

Prior to coming to UH in 1994, Cahill was a research assistant professor in the Department of Anatomy and Cell biology at the University of Kansas Medical Center in Kansas City and received his postdoctoral training at Emory University. He received his doctorate in biology and neuroscience from the University of Oregon in Eugene, where he studied the mechanisms of circadian responses to light. He graduated with his bachelor of science from the College of Biological Sciences at the University of Minnesota in Minneapolis/St. Paul. His research interests include molecular, cellular and physiological mechanisms of vertebrate circadian rhythmicity, photoreceptor cell and molecular biology, and neurobiology. He is a member of the Society for Research on Biological Rhythms and the Society for Neuroscience and is currently funded under a $1.2 million National Institutes of Health grant through 2007 as the principal investigator on "Genetic analysis of zebrafish circadian rhythmicity," under which this latest study falls.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>