Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists propose sweeping changes to naming of bird neurosystems


Researchers now see birds’ cognitive ability as more comparable to mammals

Duke University neurobiologist Erich Jarvis and a team of 28 other neuroscientists have proposed sweeping changes to the terminology associated with the brain structures of birds--a century-old nomenclature the researchers consider outdated and irrelevant to birds’ true brainpower.

The international research group concludes in a Feb. 2005, paper published in Nature Reviews Neuroscience that significant discoveries made over time reveal that birds are much closer to mammals in cognitive ability, and therefore, a new consistency in language will enhance studies of both.

In the journal’s "Perspectives" column, authors describe a wide range of studies demonstrating that the so-called "primitive" regions of avian brains are actually sophisticated processing regions homologous to those in mammals. Those studies, which included tracing of neural pathways and behavior, showed that such avian brain regions carry out sensory processing, motor control and sensorimotor learning just as the mammalian neocortex. The scientists add that molecular studies reveal the avian and mammalian brain regions are comparable in their genetic and biochemical machinery.

In the same column, Jarvis and members of the Avian Brain Nomenclature Consortium reason that the old view of evolution in birds is no longer valid. Citing technical revisions to the nomenclature that were published in a May 2004, issue of the Journal of Comparative Neurology, consortium members assert in the new article that the old terminology--which implied that the avian brain was more primitive than the mammalian brain--has hindered scientific understanding.

"We believe that names have a powerful influence on the experiments we do and the way in which we think," wrote the authors of the new report. "Our current understanding of the avian brain requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains."

The consortium’s efforts were supported by the National Science Foundation (NSF) and the National Institutes of Health (NIH). Lead author Jarvis organized the Duke conference in 2002 that brought together the many researchers in neuroscience and neuroanatomy to undertake discussions of the needed changes.

The group believed the previous terminology and associated concepts of how to define avian brain structure and avian brain evolution stymied efforts to directly link discoveries in the avian brain with those of other mammals. Jarvis, whose seminal work in vocal learning in birds garnered him $500,000 in 2002 as recipient of NSF’s Waterman Award, acknowledged that the award came at a critical time in his work with the consortium.

"The impact of this work will go far beyond simple comparative anatomy," Jarvis said. "There is strong interest across neuroscience in using birds as models for learning and development, and migratory and social behavior."

The revision of the nomenclature for avian brains would replace a system developed in the 19th century by Ludwig Edinger, considered the father of comparative neuroanatomy. Edinger’s system was based on a then-common practice of combining Darwin’s recent theory of evolution and Aristotle’s old concept that there exists a natural "scale" of creatures from lowest to highest. The prevailing views became that evolution was progressive from organisms with "lower" intelligence to those with "higher" intelligence and that evolution had a purpose--the generation of humans.

In the new view, the neocortex and related areas in the mammalian brain are derived from a region in the embryonic cerebrum called the pallium, or covering, a very different conclusion from Edinger’s, which considered this region in the bird cerebrum part of the basal ganglia.

The consortium’s work actually began in 1997, and was organized by Jarvis, Anton Reiner of the University of Tennessee Health Science Center in Memphis, Martin Wild of the University of Auckland in New Zealand, and other neurobiologists, who called themselves the "ThinkTank." Encouraging scientists to adjust their traditions and thinking based on new knowledge coming from the field had a rocky start, so the effort to change avian brain nomenclature turned into a seven-year project, with a steady add-on of new recruits. This effort culminated in the international scientific forum at Duke University in 2002, from which the new nomenclature was developed.

"We knew that we were doing something that may have an impact, not only on the immediate conduct of research in neuroscience, but on neuroscience for the next hundred years," said Jarvis. "And this nomenclature will help people understand that evolution has created more than one way to generate complex behavior--the mammal way and the bird way. And they’re comparable to one another. In fact, some birds have evolved cognitive abilities that are far more complex than in many mammals."

Bill Noxon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>