Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists propose sweeping changes to naming of bird neurosystems

01.02.2005


Researchers now see birds’ cognitive ability as more comparable to mammals



Duke University neurobiologist Erich Jarvis and a team of 28 other neuroscientists have proposed sweeping changes to the terminology associated with the brain structures of birds--a century-old nomenclature the researchers consider outdated and irrelevant to birds’ true brainpower.

The international research group concludes in a Feb. 2005, paper published in Nature Reviews Neuroscience that significant discoveries made over time reveal that birds are much closer to mammals in cognitive ability, and therefore, a new consistency in language will enhance studies of both.


In the journal’s "Perspectives" column, authors describe a wide range of studies demonstrating that the so-called "primitive" regions of avian brains are actually sophisticated processing regions homologous to those in mammals. Those studies, which included tracing of neural pathways and behavior, showed that such avian brain regions carry out sensory processing, motor control and sensorimotor learning just as the mammalian neocortex. The scientists add that molecular studies reveal the avian and mammalian brain regions are comparable in their genetic and biochemical machinery.

In the same column, Jarvis and members of the Avian Brain Nomenclature Consortium reason that the old view of evolution in birds is no longer valid. Citing technical revisions to the nomenclature that were published in a May 2004, issue of the Journal of Comparative Neurology, consortium members assert in the new article that the old terminology--which implied that the avian brain was more primitive than the mammalian brain--has hindered scientific understanding.

"We believe that names have a powerful influence on the experiments we do and the way in which we think," wrote the authors of the new report. "Our current understanding of the avian brain requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains."

The consortium’s efforts were supported by the National Science Foundation (NSF) and the National Institutes of Health (NIH). Lead author Jarvis organized the Duke conference in 2002 that brought together the many researchers in neuroscience and neuroanatomy to undertake discussions of the needed changes.

The group believed the previous terminology and associated concepts of how to define avian brain structure and avian brain evolution stymied efforts to directly link discoveries in the avian brain with those of other mammals. Jarvis, whose seminal work in vocal learning in birds garnered him $500,000 in 2002 as recipient of NSF’s Waterman Award, acknowledged that the award came at a critical time in his work with the consortium.

"The impact of this work will go far beyond simple comparative anatomy," Jarvis said. "There is strong interest across neuroscience in using birds as models for learning and development, and migratory and social behavior."

The revision of the nomenclature for avian brains would replace a system developed in the 19th century by Ludwig Edinger, considered the father of comparative neuroanatomy. Edinger’s system was based on a then-common practice of combining Darwin’s recent theory of evolution and Aristotle’s old concept that there exists a natural "scale" of creatures from lowest to highest. The prevailing views became that evolution was progressive from organisms with "lower" intelligence to those with "higher" intelligence and that evolution had a purpose--the generation of humans.

In the new view, the neocortex and related areas in the mammalian brain are derived from a region in the embryonic cerebrum called the pallium, or covering, a very different conclusion from Edinger’s, which considered this region in the bird cerebrum part of the basal ganglia.

The consortium’s work actually began in 1997, and was organized by Jarvis, Anton Reiner of the University of Tennessee Health Science Center in Memphis, Martin Wild of the University of Auckland in New Zealand, and other neurobiologists, who called themselves the "ThinkTank." Encouraging scientists to adjust their traditions and thinking based on new knowledge coming from the field had a rocky start, so the effort to change avian brain nomenclature turned into a seven-year project, with a steady add-on of new recruits. This effort culminated in the international scientific forum at Duke University in 2002, from which the new nomenclature was developed.

"We knew that we were doing something that may have an impact, not only on the immediate conduct of research in neuroscience, but on neuroscience for the next hundred years," said Jarvis. "And this nomenclature will help people understand that evolution has created more than one way to generate complex behavior--the mammal way and the bird way. And they’re comparable to one another. In fact, some birds have evolved cognitive abilities that are far more complex than in many mammals."

Bill Noxon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>