Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into regulation of blood stem cells

01.02.2005


Scientists have made a significant advance toward understanding the regulation of blood stem cells and the complex, lifelong process of blood cell formation. A research study published in the February issue of Developmental Cell expands on previous studies by using adult animals to examine the role of a key gene known to be required for blood cell formation. Information gained from this research will be useful for future studies aimed at directing stem cell differentiation in a variety of potential therapeutic contexts.



Blood cell formation, known as hematopoiesis, begins with a hematopoietic stem cell (HSC), which can either "self-renew" and make more copies of itself or differentiate into either red blood cells, various types of white blood cells, or platelets. The genes that control proliferation and differentiation have been difficult to study using traditional gene disruption methods because loss of genes thought to be critical for this process often results in embryonic death, making it impossible to study the role of the gene of interest in mature animals.

Dr. Michael P. Cooke and colleagues from the Genomics Institute of the Novartis Research Foundation in San Diego found a way around this problem. The researchers used random mutagenesis and screening to find animals with hematopoiesis defects, and they used genetics to identify the causative gene. One line mapped to a mutation in the gene c-Myb, which has a known role in regulation of blood formation.


Interestingly, they found that c-Myb is not required for every step of hematopoiesis or for every type of blood cell. Instead, c-Myb is critical for very distinct steps in the formation of specific types of blood cells. Most surprisingly, the c-Myb mutants also had a dramatic increase in the total number of HSCs, suggesting that part of the normal function of c-Myb is to hold HSC multiplication in check.

These data suggest that c-Myb is a key regulator of hematopoiesis and acts at many distinct points to control HSCs. "It is remarkable that a single transcription factor controls the diverse processes of self-renewal, proliferation, and differentiation" says Dr. Cooke. "The next challenge is to understand how c-Myb controls HSC numbers and use this information to develop compounds that can regulate stem cell proliferation and differentiation. The ability to influence stem cell fate decisions would be expected to have a major impact on the field of stem cell therapy and to provide important in vitro model systems for the identification of genes and compounds that can be used to regulate the process of stem cell differentiation."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.developmentalcell.com/

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>