Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insight into regulation of blood stem cells


Scientists have made a significant advance toward understanding the regulation of blood stem cells and the complex, lifelong process of blood cell formation. A research study published in the February issue of Developmental Cell expands on previous studies by using adult animals to examine the role of a key gene known to be required for blood cell formation. Information gained from this research will be useful for future studies aimed at directing stem cell differentiation in a variety of potential therapeutic contexts.

Blood cell formation, known as hematopoiesis, begins with a hematopoietic stem cell (HSC), which can either "self-renew" and make more copies of itself or differentiate into either red blood cells, various types of white blood cells, or platelets. The genes that control proliferation and differentiation have been difficult to study using traditional gene disruption methods because loss of genes thought to be critical for this process often results in embryonic death, making it impossible to study the role of the gene of interest in mature animals.

Dr. Michael P. Cooke and colleagues from the Genomics Institute of the Novartis Research Foundation in San Diego found a way around this problem. The researchers used random mutagenesis and screening to find animals with hematopoiesis defects, and they used genetics to identify the causative gene. One line mapped to a mutation in the gene c-Myb, which has a known role in regulation of blood formation.

Interestingly, they found that c-Myb is not required for every step of hematopoiesis or for every type of blood cell. Instead, c-Myb is critical for very distinct steps in the formation of specific types of blood cells. Most surprisingly, the c-Myb mutants also had a dramatic increase in the total number of HSCs, suggesting that part of the normal function of c-Myb is to hold HSC multiplication in check.

These data suggest that c-Myb is a key regulator of hematopoiesis and acts at many distinct points to control HSCs. "It is remarkable that a single transcription factor controls the diverse processes of self-renewal, proliferation, and differentiation" says Dr. Cooke. "The next challenge is to understand how c-Myb controls HSC numbers and use this information to develop compounds that can regulate stem cell proliferation and differentiation. The ability to influence stem cell fate decisions would be expected to have a major impact on the field of stem cell therapy and to provide important in vitro model systems for the identification of genes and compounds that can be used to regulate the process of stem cell differentiation."

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>