Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Biology Fills Gaps in Knowledge of Bat Evolution

31.01.2005


UCR Biologist Mark Springer, Part of Research Team Publishing in Journal Science




One in five mammals living on Earth is a bat, yet their evolutionary history is largely unknown because of a limited fossil record and conflicting or incomplete theories about their origins and divergence. Now, a research team including University of California, Riverside Biology Professor Mark Springer, has published a paper in the Jan. 28 issue of the journal Science that uses molecular biology and the fossil data to fill in many of the gaps.

Springer coauthors the paper, titled A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record, with William Murphy, Stephen J. O’Brien and Emma. C. Teeling of the National Cancer Institute’s Laboratory of Genomic Diversity, Frederick, MD; Ole Madsen in the Department of Biochemistry at the University of Nijmegen, the Netherlands; and Paul Bates of the Harrison Institute’s Centre for Systematics and Biodiversity Research, Kent, U.K. “The present work advances our understanding of where bats originated, when they diversified and how different bat families are related to each other,” Springer said. “It also quantifies the fraction of the fossil record that is missing for bats.”


The team, using DNA sequencing, analyzed data from portions of 17 nuclear genes from representatives of all bat families. Their results support the hypothesis that the group of large fruit-eating bats from the tropics, that fly mostly during the day – known to biologists as megabats – emerged from four major lineages of smaller and more widely dispersed, mostly insect-eating, night-flying bats, known as microbats. These microbats – also known for their highly specialized echolocation – originated about 52 to 50 million years ago during a lush period of significant global warming in a region that is now North America.

This latest research helps fill gaps in the evolutionary history of one of the most diverse group of mammals on earth and the only mammals capable of powered flight. The fossil record alone left bat evolutionary history about 61 percent incomplete, according to Springer. Bats play a major ecological role as plant pollinators and insect predators.

For Springer, this latest research is significant because it shows that molecular information can contribute to resolving and illuminating long-standing problems in evolutionary biology. The current findings lay the groundwork for further research that, Springer hopes, will expand the coverage of classifications of bats from the family level to the genus level and probe in more detail into the bat evolutionary record. He also plans to compare the completeness of the bat fossil record with that of other mammals.

Related Links:

University of Michigan Museum of Zoology animal diversity Web site
The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information. Media sources are available at http://www.mediasources.ucr.edu/.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>