Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Biology Fills Gaps in Knowledge of Bat Evolution

31.01.2005


UCR Biologist Mark Springer, Part of Research Team Publishing in Journal Science




One in five mammals living on Earth is a bat, yet their evolutionary history is largely unknown because of a limited fossil record and conflicting or incomplete theories about their origins and divergence. Now, a research team including University of California, Riverside Biology Professor Mark Springer, has published a paper in the Jan. 28 issue of the journal Science that uses molecular biology and the fossil data to fill in many of the gaps.

Springer coauthors the paper, titled A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record, with William Murphy, Stephen J. O’Brien and Emma. C. Teeling of the National Cancer Institute’s Laboratory of Genomic Diversity, Frederick, MD; Ole Madsen in the Department of Biochemistry at the University of Nijmegen, the Netherlands; and Paul Bates of the Harrison Institute’s Centre for Systematics and Biodiversity Research, Kent, U.K. “The present work advances our understanding of where bats originated, when they diversified and how different bat families are related to each other,” Springer said. “It also quantifies the fraction of the fossil record that is missing for bats.”


The team, using DNA sequencing, analyzed data from portions of 17 nuclear genes from representatives of all bat families. Their results support the hypothesis that the group of large fruit-eating bats from the tropics, that fly mostly during the day – known to biologists as megabats – emerged from four major lineages of smaller and more widely dispersed, mostly insect-eating, night-flying bats, known as microbats. These microbats – also known for their highly specialized echolocation – originated about 52 to 50 million years ago during a lush period of significant global warming in a region that is now North America.

This latest research helps fill gaps in the evolutionary history of one of the most diverse group of mammals on earth and the only mammals capable of powered flight. The fossil record alone left bat evolutionary history about 61 percent incomplete, according to Springer. Bats play a major ecological role as plant pollinators and insect predators.

For Springer, this latest research is significant because it shows that molecular information can contribute to resolving and illuminating long-standing problems in evolutionary biology. The current findings lay the groundwork for further research that, Springer hopes, will expand the coverage of classifications of bats from the family level to the genus level and probe in more detail into the bat evolutionary record. He also plans to compare the completeness of the bat fossil record with that of other mammals.

Related Links:

University of Michigan Museum of Zoology animal diversity Web site
The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information. Media sources are available at http://www.mediasources.ucr.edu/.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>