Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal cells ‘energy factories’ linked to cancer

31.01.2005


University of Glasgow scientists have discovered how mitochondria - the energy factories in our cells - can sustain a cancer, reporting their findings in a new study published in Cancer Cell.



Mitochondria are complex structures that exist in cells to generate energy for growth and activity. The Cancer Research UK researchers based at the University of Glasgow’s Beatson Institute for Cancer Research in Glasgow have found out how the excessive build-up of a simple metabolic molecule in mitochondria can trigger a sequence of events that leads to tumour growth.

The discovery increases our understanding of the molecular basis of several types of cancer, which is crucial for the development of new ways to prevent, diagnose and treat the disease. Scientists know that a number of genes that code for the mitochondria’s energy generating machinery are tumour suppressors and that defects in these genes can lead to cancer. But, until now, it was unclear as to how mutations in these genes resulted in the disease.


The team looked at one of the known tumour suppressor genes called SDH, which codes for a molecule called succinate dehydrogenase. When the SDH gene is damaged, a metabolic product called succinic acid accumulates in cells. This then causes the levels of a protein called HIF-1to rise. The HIF-1 protein is normally only activated in response to certain types of crisis in the cell, such as a lack of oxygen. Under these conditions it encourages the growth of blood vessels to help cells get more oxygen.

The researchers have found the missing pieces in this puzzle. They show how the high levels of succinic acid in the cell that result from SDH mutations block the cell’s usual method of ridding the cell of HIF-1. HIF-1 levels can then build up, resulting in inappropriate growth of blood vessels, which can feed a tumour.

Dr Eyal Gottlieb, a Cancer Research UK scientist based at the University of Glasgow’s Beatson Institute in Glasgow, says: “We found that damage to the SDH gene boosts the levels of succinic acid in a cell and this, in turn, prevents the degradation of HIF-1. HIF-1 is then free to increase the expression of genes that facilitate blood vessel growth, tumour development and cancer spread.

Dr Lesley Walker, Director of Cancer Information at Cancer Research UK, says: “Mutations in SDH can predispose a person to cancer of the kidney, adrenal gland and thyroid gland. Changes in SDH activity may also be associated with stomach and bowel cancer.

“This study is exciting because it is the first to find a molecular mechanism that links mitochondrial mutations to tumour formation. Increasing our understanding of the molecular basis of cancer is crucial if we are to find new ways of preventing, diagnosing and treating the disease in the future.”

Jenny Murray | alfa
Further information:
http://www.gla.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>