Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein stops growth of brain tumor

28.01.2005


Herstatin blocks signaling inside cells that leads to deadly glioblastoma growth



A protein developed by scientists at Oregon Health & Science University blocks the growth of glioblastoma, an aggressive and deadly brain tumor, in laboratory rats, a new study shows. Herstatin inhibits the activation of a family of enzymes responsible for signaling inside tumor cells that tells the cells to proliferate and display other malignant properties, said Gail Clinton, Ph.D., professor of biochemistry and molecular biology in the OHSU School of Medicine who co-authored the study appearing this month in the journal Clinical Cancer Research. "The growth is completely blocked in the intracranial model," said Clinton, a member of the OHSU Cancer Institute.

Over-expression of the epidermal growth factor (EGF) receptors results in a cascade of signals in the glioblastoma cells that drives their growth. But herstatin, a naturally occurring product, blocks growth of the cells by binding to EGF receptors and turning signaling off. Clinton said human clinical trials for herstatin could begin as early as next year. In fact, the technology is part of a patent portfolio that OHSU has licensed exclusively to San Francisco-based pharmaceutical company Receptor BioLogix Inc., which is developing herstatin as a cancer therapeutic for a variety of cancer types under the name Dimercept.


According to the nonprofit Central Brain Tumor Registry of the United States, glioblastomas account for the majority - 52 percent - of all gliomas, which are tumors that arise from glial cells and include astrocytomas, oligodendrocytomas, ependymomas, mixed gliomas, malignant gliomas NOS (nitric oxide synthase), and neuroepithelial tumors. Glioblastomas make up 23 percent of all brain and central nervous system tumors.

Between 1995 and 1999, there were 8,690 reported cases of glioblastomas in the United States. The median age at diagnosis was 65, and men make up the majority of cases. The disease is most deadly within the first year after diagnosis. Study co-author Edward Neuwelt, M.D., professor of neurology and neurological surgery, OHSU School of Medicine and the Portland Veterans Affairs Medical Center, called the results "very exciting."

Treating glioblastomas, which can be several millimeters to several centimeters wide, has been tricky. Radiation and chemotherapy "help a little bit, but nothing helps very much," Neuwelt said, and getting chemotherapy drugs past the blood-brain barrier, the brain’s protective wall of tightly knit endothelial cells, always is difficult.

However, herstatin shows promise as a viable alternative to traditional brain tumor treatment methods, he said. "That herstatin gene Gail developed is very powerful on this tumor, as the paper shows," said Neuwelt, a member of the OHSU Cancer Institute who directs the OHSU Blood-Brain Barrier Program and pioneered a method for getting most drugs past the barrier. "I think this is a very significant approach."

But Neuwelt added that "One should always view with caution new and exciting results in rodent models since they may or may not translate in humans." Scientists used herstatin to treat human glioblastoma cells grown in culture and implanted in rats. "We saw a few tumor cells at the injection site, but they never proliferated," Clinton said.

Herstatin was not effective on a mutant form of the EGF receptor, called EGF receptor delta. The mutant receptor causes even more aggressive tumor growth in a subset of glioma. "We found our inhibitor targets the full-length EGF receptor, but not the mutant EGF receptor," Clinton said. "So a patient with a glioma generated by the mutant EGF receptor would not be expected to respond to herstatin."

She added, "This inhibitor we have is a naturally occurring one, and it’s possible that the mutant EGF receptor may have developed to confer resistance to the class of inhibitors that blocks the extracellular domain" on the glioblastoma cells. About a third of all glioblastomas derive from the mutant receptor, Neuwelt said.

Although herstatin is not effective against the mutant EGF receptor, the study’s results demonstrate highly selective molecules can be developed to target pathogen cells, reducing the chance that other complications will crop up when treating diseases. "It gives new information about which tumors to target, what molecular profile is important to look at up front, but it also tells us that herstatin is a specific inhibitor," Clinton noted. "This is another step in proving it doesn’t kill all cells, and the more specific and tailored it is to a particular molecular profile, the less likely you’re going to have a lot of side effects."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>