Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein stops growth of brain tumor

28.01.2005


Herstatin blocks signaling inside cells that leads to deadly glioblastoma growth



A protein developed by scientists at Oregon Health & Science University blocks the growth of glioblastoma, an aggressive and deadly brain tumor, in laboratory rats, a new study shows. Herstatin inhibits the activation of a family of enzymes responsible for signaling inside tumor cells that tells the cells to proliferate and display other malignant properties, said Gail Clinton, Ph.D., professor of biochemistry and molecular biology in the OHSU School of Medicine who co-authored the study appearing this month in the journal Clinical Cancer Research. "The growth is completely blocked in the intracranial model," said Clinton, a member of the OHSU Cancer Institute.

Over-expression of the epidermal growth factor (EGF) receptors results in a cascade of signals in the glioblastoma cells that drives their growth. But herstatin, a naturally occurring product, blocks growth of the cells by binding to EGF receptors and turning signaling off. Clinton said human clinical trials for herstatin could begin as early as next year. In fact, the technology is part of a patent portfolio that OHSU has licensed exclusively to San Francisco-based pharmaceutical company Receptor BioLogix Inc., which is developing herstatin as a cancer therapeutic for a variety of cancer types under the name Dimercept.


According to the nonprofit Central Brain Tumor Registry of the United States, glioblastomas account for the majority - 52 percent - of all gliomas, which are tumors that arise from glial cells and include astrocytomas, oligodendrocytomas, ependymomas, mixed gliomas, malignant gliomas NOS (nitric oxide synthase), and neuroepithelial tumors. Glioblastomas make up 23 percent of all brain and central nervous system tumors.

Between 1995 and 1999, there were 8,690 reported cases of glioblastomas in the United States. The median age at diagnosis was 65, and men make up the majority of cases. The disease is most deadly within the first year after diagnosis. Study co-author Edward Neuwelt, M.D., professor of neurology and neurological surgery, OHSU School of Medicine and the Portland Veterans Affairs Medical Center, called the results "very exciting."

Treating glioblastomas, which can be several millimeters to several centimeters wide, has been tricky. Radiation and chemotherapy "help a little bit, but nothing helps very much," Neuwelt said, and getting chemotherapy drugs past the blood-brain barrier, the brain’s protective wall of tightly knit endothelial cells, always is difficult.

However, herstatin shows promise as a viable alternative to traditional brain tumor treatment methods, he said. "That herstatin gene Gail developed is very powerful on this tumor, as the paper shows," said Neuwelt, a member of the OHSU Cancer Institute who directs the OHSU Blood-Brain Barrier Program and pioneered a method for getting most drugs past the barrier. "I think this is a very significant approach."

But Neuwelt added that "One should always view with caution new and exciting results in rodent models since they may or may not translate in humans." Scientists used herstatin to treat human glioblastoma cells grown in culture and implanted in rats. "We saw a few tumor cells at the injection site, but they never proliferated," Clinton said.

Herstatin was not effective on a mutant form of the EGF receptor, called EGF receptor delta. The mutant receptor causes even more aggressive tumor growth in a subset of glioma. "We found our inhibitor targets the full-length EGF receptor, but not the mutant EGF receptor," Clinton said. "So a patient with a glioma generated by the mutant EGF receptor would not be expected to respond to herstatin."

She added, "This inhibitor we have is a naturally occurring one, and it’s possible that the mutant EGF receptor may have developed to confer resistance to the class of inhibitors that blocks the extracellular domain" on the glioblastoma cells. About a third of all glioblastomas derive from the mutant receptor, Neuwelt said.

Although herstatin is not effective against the mutant EGF receptor, the study’s results demonstrate highly selective molecules can be developed to target pathogen cells, reducing the chance that other complications will crop up when treating diseases. "It gives new information about which tumors to target, what molecular profile is important to look at up front, but it also tells us that herstatin is a specific inhibitor," Clinton noted. "This is another step in proving it doesn’t kill all cells, and the more specific and tailored it is to a particular molecular profile, the less likely you’re going to have a lot of side effects."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>