Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein stops growth of brain tumor

28.01.2005


Herstatin blocks signaling inside cells that leads to deadly glioblastoma growth



A protein developed by scientists at Oregon Health & Science University blocks the growth of glioblastoma, an aggressive and deadly brain tumor, in laboratory rats, a new study shows. Herstatin inhibits the activation of a family of enzymes responsible for signaling inside tumor cells that tells the cells to proliferate and display other malignant properties, said Gail Clinton, Ph.D., professor of biochemistry and molecular biology in the OHSU School of Medicine who co-authored the study appearing this month in the journal Clinical Cancer Research. "The growth is completely blocked in the intracranial model," said Clinton, a member of the OHSU Cancer Institute.

Over-expression of the epidermal growth factor (EGF) receptors results in a cascade of signals in the glioblastoma cells that drives their growth. But herstatin, a naturally occurring product, blocks growth of the cells by binding to EGF receptors and turning signaling off. Clinton said human clinical trials for herstatin could begin as early as next year. In fact, the technology is part of a patent portfolio that OHSU has licensed exclusively to San Francisco-based pharmaceutical company Receptor BioLogix Inc., which is developing herstatin as a cancer therapeutic for a variety of cancer types under the name Dimercept.


According to the nonprofit Central Brain Tumor Registry of the United States, glioblastomas account for the majority - 52 percent - of all gliomas, which are tumors that arise from glial cells and include astrocytomas, oligodendrocytomas, ependymomas, mixed gliomas, malignant gliomas NOS (nitric oxide synthase), and neuroepithelial tumors. Glioblastomas make up 23 percent of all brain and central nervous system tumors.

Between 1995 and 1999, there were 8,690 reported cases of glioblastomas in the United States. The median age at diagnosis was 65, and men make up the majority of cases. The disease is most deadly within the first year after diagnosis. Study co-author Edward Neuwelt, M.D., professor of neurology and neurological surgery, OHSU School of Medicine and the Portland Veterans Affairs Medical Center, called the results "very exciting."

Treating glioblastomas, which can be several millimeters to several centimeters wide, has been tricky. Radiation and chemotherapy "help a little bit, but nothing helps very much," Neuwelt said, and getting chemotherapy drugs past the blood-brain barrier, the brain’s protective wall of tightly knit endothelial cells, always is difficult.

However, herstatin shows promise as a viable alternative to traditional brain tumor treatment methods, he said. "That herstatin gene Gail developed is very powerful on this tumor, as the paper shows," said Neuwelt, a member of the OHSU Cancer Institute who directs the OHSU Blood-Brain Barrier Program and pioneered a method for getting most drugs past the barrier. "I think this is a very significant approach."

But Neuwelt added that "One should always view with caution new and exciting results in rodent models since they may or may not translate in humans." Scientists used herstatin to treat human glioblastoma cells grown in culture and implanted in rats. "We saw a few tumor cells at the injection site, but they never proliferated," Clinton said.

Herstatin was not effective on a mutant form of the EGF receptor, called EGF receptor delta. The mutant receptor causes even more aggressive tumor growth in a subset of glioma. "We found our inhibitor targets the full-length EGF receptor, but not the mutant EGF receptor," Clinton said. "So a patient with a glioma generated by the mutant EGF receptor would not be expected to respond to herstatin."

She added, "This inhibitor we have is a naturally occurring one, and it’s possible that the mutant EGF receptor may have developed to confer resistance to the class of inhibitors that blocks the extracellular domain" on the glioblastoma cells. About a third of all glioblastomas derive from the mutant receptor, Neuwelt said.

Although herstatin is not effective against the mutant EGF receptor, the study’s results demonstrate highly selective molecules can be developed to target pathogen cells, reducing the chance that other complications will crop up when treating diseases. "It gives new information about which tumors to target, what molecular profile is important to look at up front, but it also tells us that herstatin is a specific inhibitor," Clinton noted. "This is another step in proving it doesn’t kill all cells, and the more specific and tailored it is to a particular molecular profile, the less likely you’re going to have a lot of side effects."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>