Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New puzzle-piece shows how growth hormones work in plants

28.01.2005


Stanford, California. Both plant and animal growth is controlled by steroid hormones--signaling molecules that tell specific genes in cells to begin the physiological process of increasing cell size. Although these molecular managers operate similarly in plants and animals, the chain of events in regulating cellular functions appears to be very different in the two kingdoms. In animals, hormone reception begins in the nucleus of the cell. In plants, a steroid hormone family called brassinosteroids (BRs) start to work on the surface of the cell. A bucket-brigade of activity then wins its way into the cell’s nucleus to activate specific genes that tell the cell to grow. "We found a key component in this complex chain reaction in the cell nucleus that promotes cell growth," stated co-author Zhi-Yong Wang, of Carnegie’s Department of Plant Biology in Stanford, CA (zywang24@stanford.edu) . The research has important implications for the possibility of understanding how to manipulate the signaling machinery to increase plant growth and yield. The paper is published in the January 27, 2005, Science Express.



As Wang explained: "We’ve known for some time what happens at the cell’s surface, so understanding what is happening in the nucleus is very important for unraveling this mystery of plant growth. We found that in the model plant Arabidopsis, a protein in the cell nucleus called BZR1, which is activated when the BR hormone is present, has a previously unknown segment where molecular binding occurs. Instead of stimulating an activity, the protein binds to a DNA sequence (named brassinosteriod-response element or BRRE), which stops the process of transcription--the transfer of genetic information from the DNA template molecule to messenger RNA--for a gene named CPD. Because the CPD gene orders the production of an enzyme needed for BR synthesis, this suppression stops the production of BR conferring a feedback regulation of BR production. When the BR steroid level is high, BZR1 is activated and BR synthesis is reduced. When the level is low, the synthesis is high. This feedback regulation is critical for maintaining an optimal steroid level for plant growth.

Using sophisticated microarray analyses of mutant Arabidopsis plants, which produce a more active version of BZR1, the scientist also found that in addition to coordinating equilibrium in plants, BZR1 also promotes growth, thus playing a dual role. The researchers further identified other genes controlled by BZR1, and studies of these genes will enhance the understanding of how steroid hormones regulate plant growth.

Zhi-Yong Wang | EurekAlert!
Further information:
http://www.CarnegieInstitution.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>