Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists ID molecular ’switch’ in liver that triggers harmful effects of saturated and trans fats


Dana-Farber Cancer Institute researchers have identified a molecular mechanism in the liver that explains, for the first time, how consuming foods rich in saturated fats and trans-fatty acids causes elevated blood levels of cholesterol and triglycerides and increases one’s risk of heart disease and certain cancers.

In the Jan. 28 issue of Cell, scientists led by Bruce Spiegelman, PhD, report that the harmful effects of saturated and trans fats are set in motion by a biochemical switch, or co-activator, in liver cells called PGC-1beta.

Until now, scientists lacked a detailed explanation of how saturated and trans fats caused an increase in blood cholesterol and triglycerides, while diets high in unsaturated and polyunsaturated fats did not. Evidence pointed to the liver, which is responsible for the body’s synthesis of triglycerides and cholesterol, but the molecular chain of events from eating fats to the buildup of cholesterol and triglycerides in the blood were unknown.

"What we have found is a missing link, a mechanism by which saturated fats and trans fats can do their dirty work," said Spiegelman, who carries out basic research on fat cells and metabolic pathways in diabetes and cancer at Dana-Farber. "It offers the opportunity to try to understand what makes these fatty acids so deleterious, and what we need to avoid."

Moreover, it is possible that in the future, drug therapy might be used to "turn down" the mechanism, decreasing cholesterol levels and heart disease risk, explained Spiegelman, who is also a professor of cell biology at Harvard Medical School.

Saturated fats are found in fatty cuts of meat, whole-milk dairy products, butter, and palm and coconut oils; they are associated with higher risk of coronary disease. The healthier polyunsaturated fats are those that remain liquid at room temperature, such as various types of vegetable oils.

Trans-unsaturated fatty acids, or trans fats, are artificially produced solid fats used in shortening and margarine, baked goods, and the oils used to cook french fries and other fast food. Studies have shown that trans fats not only raise LDL levels in the bloodstream but lower high-density lipoproteins (HDL, or "good" cholesterol) and may have even stronger adverse effects than do saturated fats.

The researchers report that when activated by harmful fats, PGC-1beta alters liver metabolism through a cascade of biochemical signals. The result is an upsurge in the liver’s production of very low-density lipoprotein (VLDL) cholesterol, the precursor of low-density lipoprotein (LDL) cholesterol (known as the "bad" form of cholesterol) and triglycerides – another fatty substance – that are secreted into the bloodstream.

PGC-1beta belongs to a specific family of co-activators, proteins that interact with other proteins to turn genes on and off and adjust their activity, like a dimmer switch that varies the brightness of a light. Co-activators join with other regulatory proteins called transcription factors in controlling the expression of genes. Spiegelman and Jiandie Lin, PhD, the paper’s lead author and a researcher at Dana-Farber, have previously discovered the PGC-1 co-activator family and several of its biochemical activities.

The Dana-Farber researchers made the discovery in searching for the function of PGC-1beta co-activator that was isolated in 2002. Experiments including the measurement of gene activity by microarrays showed that saturated and trans fats caused greater activity of the gene that makes PGC-1beta co-activator than did unsaturated fats.

The research also showed that when the fats triggered PGC-1beta, the co-activator interacted physically and turned up the function of sterol responsive element binding proteins. These important parts of the mechanism activate many key genes of lipid biosynthesis involving the pathways of cholesterol and triglycerides; these genes directed the liver to manufacture more cholesterol, which it does in the form of very low-density lipoproteins. The investigators noted that in mice fed high-fat diets, the PCG-1beta mechanism actually decreased cholesterol in the liver while increasing it in the bloodstream.

"Before this report, it wasn’t clear what the differences were between saturated fats and unsaturated fats in their ability to raise cholesterol blood levels," commented Jeffrey Flier, MD, an obesity specialist at Beth Israel Deaconess Medical Center. "These are important findings in a long-established area of medicine."

Bill Schaller | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>