Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important New Research Identifies How Brain Cells Die During A Stroke

28.01.2005


Medical Research Council (MRC) scientists, in collaboration with colleagues from British and Italian universities, have unveiled a mechanism that causes the death of brain cells (neurons) in stroke. The discovery may help explain why some therapy approaches for stroke have been unsuccessful and identifies potential research avenues for the development of new treatments for stroke and other degenerative brain diseases.



Stroke is a consequence of an abrupt interruption of blood flow to the brain. When the blood supply stops, the nerve cells that are directly deprived of oxygen quickly die and release the chemicals that they use to communicate with each other. One of these neurotransmitters – glutamate – spreads to surrounding cells and sets off a process called excitotoxicity, causing much more widespread cell death. Glutamate triggers a flood of calcium ions into the cells and, for reasons not previously understood, the level of calcium continues to rise and this kills the neurons.

The new research, carried out at the MRC’s Toxicology Unit in Leicester, studied the mechanism of calcium overload in neurons after reduction in blood supply to areas of the rat brain. The initial flood of calcium activates enzymes called calpains, which break down the proteins in the cell membrane that normally pump calcium out of the cell.


For many years research has concentrated on trying to block the inflow of calcium, in the hope of preventing brain damage in stroke. But the new findings suggest that the main defect is in the removal of calcium from neurons. This opens up new opportunities for the development of drugs to reduce nerve cell death, not only in stroke but also in degenerative brain disorders.

Each year over 130,000 people suffer from a stroke in England and Wales and acute stroke remains a major cause of death or severe chronic disability.

Research group leader and Unit Director, Professor Pierluigi Nicotera said:
“Work at the MRC Toxicology Unit has unveiled the process that destroys the primary line of defence against calcium accumulation in the brain, which explains the build-up of lethal calcium levels in neurons.

“This is an exciting discovery because these findings go some way to explaining why therapy aimed solely at decreasing calcium entry in brain cells has been unsuccessful. This research identifies potential novel targets for treatment of stroke and other neurodegenerative diseases. The findings may lead to new drugs which will treat these conditions successfully.”

Professor Colin Blakemore, Chief Executive of the Medical Research Council, said:
“This research is an important step forward for the development of new and more effective treatments for stroke – one of the most common conditions affecting the elderly in the UK. And, as the UK’s elderly population continues to grow, so does the importance of targeting the diseases that are common in later life.

“Through the creation of the new UK Clinical Research Collaboration, the MRC will work in partnership with the NHS, medical charities and industry to speed up the development of new treatments so that more patients can benefit more quickly form the latest scientific advances.”

Press Office | alfa
Further information:
http://www.mrc.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>