Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important New Research Identifies How Brain Cells Die During A Stroke

28.01.2005


Medical Research Council (MRC) scientists, in collaboration with colleagues from British and Italian universities, have unveiled a mechanism that causes the death of brain cells (neurons) in stroke. The discovery may help explain why some therapy approaches for stroke have been unsuccessful and identifies potential research avenues for the development of new treatments for stroke and other degenerative brain diseases.



Stroke is a consequence of an abrupt interruption of blood flow to the brain. When the blood supply stops, the nerve cells that are directly deprived of oxygen quickly die and release the chemicals that they use to communicate with each other. One of these neurotransmitters – glutamate – spreads to surrounding cells and sets off a process called excitotoxicity, causing much more widespread cell death. Glutamate triggers a flood of calcium ions into the cells and, for reasons not previously understood, the level of calcium continues to rise and this kills the neurons.

The new research, carried out at the MRC’s Toxicology Unit in Leicester, studied the mechanism of calcium overload in neurons after reduction in blood supply to areas of the rat brain. The initial flood of calcium activates enzymes called calpains, which break down the proteins in the cell membrane that normally pump calcium out of the cell.


For many years research has concentrated on trying to block the inflow of calcium, in the hope of preventing brain damage in stroke. But the new findings suggest that the main defect is in the removal of calcium from neurons. This opens up new opportunities for the development of drugs to reduce nerve cell death, not only in stroke but also in degenerative brain disorders.

Each year over 130,000 people suffer from a stroke in England and Wales and acute stroke remains a major cause of death or severe chronic disability.

Research group leader and Unit Director, Professor Pierluigi Nicotera said:
“Work at the MRC Toxicology Unit has unveiled the process that destroys the primary line of defence against calcium accumulation in the brain, which explains the build-up of lethal calcium levels in neurons.

“This is an exciting discovery because these findings go some way to explaining why therapy aimed solely at decreasing calcium entry in brain cells has been unsuccessful. This research identifies potential novel targets for treatment of stroke and other neurodegenerative diseases. The findings may lead to new drugs which will treat these conditions successfully.”

Professor Colin Blakemore, Chief Executive of the Medical Research Council, said:
“This research is an important step forward for the development of new and more effective treatments for stroke – one of the most common conditions affecting the elderly in the UK. And, as the UK’s elderly population continues to grow, so does the importance of targeting the diseases that are common in later life.

“Through the creation of the new UK Clinical Research Collaboration, the MRC will work in partnership with the NHS, medical charities and industry to speed up the development of new treatments so that more patients can benefit more quickly form the latest scientific advances.”

Press Office | alfa
Further information:
http://www.mrc.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>