Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important New Research Identifies How Brain Cells Die During A Stroke

28.01.2005


Medical Research Council (MRC) scientists, in collaboration with colleagues from British and Italian universities, have unveiled a mechanism that causes the death of brain cells (neurons) in stroke. The discovery may help explain why some therapy approaches for stroke have been unsuccessful and identifies potential research avenues for the development of new treatments for stroke and other degenerative brain diseases.



Stroke is a consequence of an abrupt interruption of blood flow to the brain. When the blood supply stops, the nerve cells that are directly deprived of oxygen quickly die and release the chemicals that they use to communicate with each other. One of these neurotransmitters – glutamate – spreads to surrounding cells and sets off a process called excitotoxicity, causing much more widespread cell death. Glutamate triggers a flood of calcium ions into the cells and, for reasons not previously understood, the level of calcium continues to rise and this kills the neurons.

The new research, carried out at the MRC’s Toxicology Unit in Leicester, studied the mechanism of calcium overload in neurons after reduction in blood supply to areas of the rat brain. The initial flood of calcium activates enzymes called calpains, which break down the proteins in the cell membrane that normally pump calcium out of the cell.


For many years research has concentrated on trying to block the inflow of calcium, in the hope of preventing brain damage in stroke. But the new findings suggest that the main defect is in the removal of calcium from neurons. This opens up new opportunities for the development of drugs to reduce nerve cell death, not only in stroke but also in degenerative brain disorders.

Each year over 130,000 people suffer from a stroke in England and Wales and acute stroke remains a major cause of death or severe chronic disability.

Research group leader and Unit Director, Professor Pierluigi Nicotera said:
“Work at the MRC Toxicology Unit has unveiled the process that destroys the primary line of defence against calcium accumulation in the brain, which explains the build-up of lethal calcium levels in neurons.

“This is an exciting discovery because these findings go some way to explaining why therapy aimed solely at decreasing calcium entry in brain cells has been unsuccessful. This research identifies potential novel targets for treatment of stroke and other neurodegenerative diseases. The findings may lead to new drugs which will treat these conditions successfully.”

Professor Colin Blakemore, Chief Executive of the Medical Research Council, said:
“This research is an important step forward for the development of new and more effective treatments for stroke – one of the most common conditions affecting the elderly in the UK. And, as the UK’s elderly population continues to grow, so does the importance of targeting the diseases that are common in later life.

“Through the creation of the new UK Clinical Research Collaboration, the MRC will work in partnership with the NHS, medical charities and industry to speed up the development of new treatments so that more patients can benefit more quickly form the latest scientific advances.”

Press Office | alfa
Further information:
http://www.mrc.ac.uk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>