Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important New Research Identifies How Brain Cells Die During A Stroke

28.01.2005


Medical Research Council (MRC) scientists, in collaboration with colleagues from British and Italian universities, have unveiled a mechanism that causes the death of brain cells (neurons) in stroke. The discovery may help explain why some therapy approaches for stroke have been unsuccessful and identifies potential research avenues for the development of new treatments for stroke and other degenerative brain diseases.



Stroke is a consequence of an abrupt interruption of blood flow to the brain. When the blood supply stops, the nerve cells that are directly deprived of oxygen quickly die and release the chemicals that they use to communicate with each other. One of these neurotransmitters – glutamate – spreads to surrounding cells and sets off a process called excitotoxicity, causing much more widespread cell death. Glutamate triggers a flood of calcium ions into the cells and, for reasons not previously understood, the level of calcium continues to rise and this kills the neurons.

The new research, carried out at the MRC’s Toxicology Unit in Leicester, studied the mechanism of calcium overload in neurons after reduction in blood supply to areas of the rat brain. The initial flood of calcium activates enzymes called calpains, which break down the proteins in the cell membrane that normally pump calcium out of the cell.


For many years research has concentrated on trying to block the inflow of calcium, in the hope of preventing brain damage in stroke. But the new findings suggest that the main defect is in the removal of calcium from neurons. This opens up new opportunities for the development of drugs to reduce nerve cell death, not only in stroke but also in degenerative brain disorders.

Each year over 130,000 people suffer from a stroke in England and Wales and acute stroke remains a major cause of death or severe chronic disability.

Research group leader and Unit Director, Professor Pierluigi Nicotera said:
“Work at the MRC Toxicology Unit has unveiled the process that destroys the primary line of defence against calcium accumulation in the brain, which explains the build-up of lethal calcium levels in neurons.

“This is an exciting discovery because these findings go some way to explaining why therapy aimed solely at decreasing calcium entry in brain cells has been unsuccessful. This research identifies potential novel targets for treatment of stroke and other neurodegenerative diseases. The findings may lead to new drugs which will treat these conditions successfully.”

Professor Colin Blakemore, Chief Executive of the Medical Research Council, said:
“This research is an important step forward for the development of new and more effective treatments for stroke – one of the most common conditions affecting the elderly in the UK. And, as the UK’s elderly population continues to grow, so does the importance of targeting the diseases that are common in later life.

“Through the creation of the new UK Clinical Research Collaboration, the MRC will work in partnership with the NHS, medical charities and industry to speed up the development of new treatments so that more patients can benefit more quickly form the latest scientific advances.”

Press Office | alfa
Further information:
http://www.mrc.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>