Experiments on moss grown aboard two space shuttle Columbia missions showed that the plants didnt behave as scientists expected them to in the near-absence of gravity.
The common roof moss (Ceratodon purpureus) grew in striking, clockwise spirals, according to Fred Sack, the studys lead investigator and a professor of plant cellular and molecular biology at Ohio State University. He and his colleagues noted this even in moss cultures grown aboard the second of the two space shuttle missions, STS-107, which had disintegrated upon its reentry in early 2003. Most of the hardware that contained the moss was later recovered on the ground, with some of the moss cultures still intact.
The researchers expected random, unorganized growth, as seen with every other type of plant flown in space. "We dont know why moss grew non-randomly in space, but we found distinct spiral patterns," Sack said. He and his colleagues report their findings in the current online edition of the journal Planta.
Fred Sack | EurekAlert!
Further information:
http://researchnews.osu.edu/archive/spiragro.htm
http://www.osu.edu
Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester
One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | Earth Sciences
Joining metals without welding
23.04.2018 | Trade Fair News
Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Information Technology