Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Moss in space’ project shows how some plants grow without gravity

27.01.2005


Experiments on moss grown aboard two space shuttle Columbia missions showed that the plants didn’t behave as scientists expected them to in the near-absence of gravity.



The common roof moss (Ceratodon purpureus) grew in striking, clockwise spirals, according to Fred Sack, the study’s lead investigator and a professor of plant cellular and molecular biology at Ohio State University. He and his colleagues noted this even in moss cultures grown aboard the second of the two space shuttle missions, STS-107, which had disintegrated upon its reentry in early 2003. Most of the hardware that contained the moss was later recovered on the ground, with some of the moss cultures still intact.

The researchers expected random, unorganized growth, as seen with every other type of plant flown in space. "We don’t know why moss grew non-randomly in space, but we found distinct spiral patterns," Sack said. He and his colleagues report their findings in the current online edition of the journal Planta.


Common roof moss is a relatively primitive plant in which certain cells, called tip cells, are guided by gravity in their growth. This gravity response is only seen when moss is kept in the dark, as light overrides gravity’s effect. Moss originates from chains of cells with growth only taking place in the tip-most cell of a chain. When grown in the dark, the tip cells grow away from gravity’s pull this gets the cells out of the soil and into the light. The way these tip cells respond to gravity is exceptional, Sack said. In most plants, gravity guides the growth of roots or stems, which are made up of many cells. But in moss it is just a single cell that both senses and responds to gravity.

Common roof moss was grown in Petri dishes in lockers aboard two Columbia shuttle missions the first in 1997 and the other in early 2003. Although most of the experimental moss hardware from this mission was later recovered on the ground, only 11 of the 87 recovered cultures grown on this flight were usable.

Astronauts followed similar experimental procedures on both flights. The astronauts chemically fixed the moss cultures before each mission reentered Earth’s atmosphere. This process stopped all growth in the moss. Control studies conducted at Kennedy Space Center in Florida used hardware and procedures similar to those used aboard each flight. However, these moss cultures were either kept stationary or turned at a slow spin on a clinostat a machine that resembles a record turntable placed on its edge, and is used to negate the effects of gravity.

On earth gravity controls the direction of moss growth so thoroughly that it grows straight away from the center of the earth, just like shoots in a field of corn. In space, scientists expected the cells to grow erratically in all directions since there was no gravity cue.

Instead, the moss grew non-randomly in two successive types of patterns: The first pattern resembled that of spokes in a wheel, where the cells grew outward from where they were originally sown. Later, the tips of the filaments grew in arcs so that the entire culture showed clockwise spirals. The same patterns were found when the moss was grown on a clinostat on the ground. Even with the limited data from STS-107, 10 of the 11 salvageable moss cultures showed this kind of strong radial growth and spiraling. Ground controls grown in normal conditions of gravity grew as moss normally would on earth.

The results are unusual, Sack said, as this is the first time researchers report seeing this kind of plant growth response in space. "Unlike the ordered response of moss cells in space, other types of plants grow randomly," he said. "So in moss, gravity must normally mask a default growth pattern. This pattern is only revealed when the gravity signal is lost or disrupted. "The fascinating question is why would moss have a backup growth response to conditions it has never experienced on earth? Perhaps spirals are a vestigial growth pattern, a pattern that later became masked when moss evolved the ability to respond to gravity.

Sack conducted the study with Volker Kern, who is now at Kennedy Space Center and was at Ohio State at the time of the study; David Reed, with Bionetics Corp. based at Kennedy Space Center; with former Ohio State colleagues Jeanette Nadeau, Jochen Schwuchow and Alexander Skripnikov; and with Jessica Lucas, a graduate student in Sack’s lab.

Support for this research came from the Exploration Systems Mission Directorate of the National Aeronautics and Space Administration.

Fred Sack | EurekAlert!
Further information:
http://researchnews.osu.edu/archive/spiragro.htm
http://www.osu.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>