Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain "avalanches" may help store memories

27.01.2005


Neurochemicals might someday improve life for people with memory problems



Meeting a friend you haven’t seen in years brings on a sudden surge of pleasant memories. You might even call it an avalanche.

Recent studies suggest that avalanches in your brain could actually help you to store memories. Last year, scientists at the National Institutes of Health placed slices of rat brain tissue on a microelectrode array and found that the brain cells activated each other in cascades called "neuronal avalanches."


New computer models now suggest that these brain avalanches may be optimal for information storage. If so, certain neurochemical treatments might someday improve life for people with memory problems. A report of this work will be published Feb. 4 in the journal Physical Review Letters. "When most people think of an avalanche, they imagine something huge," said biophysicist John Beggs, now a professor in the Biocomplexity Institute at Indiana University Bloomington, who helped perform the NIH experiments. "But avalanches come in all sizes, and the smaller ones are most common. That’s just what we found in the brain cells."

An avalanche roaring down a mountainside may seem to be wildly out of control, but actually it is governed by certain equations. These same equations also govern such seemingly unrelated events as forest fires and earthquakes -- as well as some neural activity in the brain, Beggs said. All are examples of phenomena that can be studied with the new science of complexity, which deals with all kinds of complex systems ranging from living cells to national economies.

Biocomplexity is a cross-disciplinary field involving physics, chemistry, computer science, mathematics and the life sciences. A description of the IU Biocomplexity Institute, headquartered in IU Bloomington’s Department of Physics, is available at http://www.indiana.edu/~iufcs/issue7/solving.shtml.

To find out the possible benefits of brain avalanches, Beggs and IU senior Clay Haldeman simulated the spreading activity of brain cells in a computer model. When the activity was tuned to mimic the avalanches seen in brain tissue, a large number of stable activity patterns appeared. Stable activity patterns are thought to be important for memory, since they have been recorded in the brains of monkeys and rats after they perform memory tasks, Beggs said. "The fact that the most stable activity patterns appeared when the network of brain cells was also producing avalanches hints that the brain may actually use avalanches to store information," Beggs said.

"This work might ultimately help human memory," he explained. "If our computer simulations apply to networks of human brain cells, then it would be desirable to have your brain in a state where it naturally produces avalanches. In the laboratory, we can apply neurochemicals to defective networks of rat brain cells, gently easing them into a state where avalanches occur. These chemicals suggest treatments that might someday improve information storage in people with memory problems."

This research was funded by the National Science Foundation.

Hal Kibbey | EurekAlert!
Further information:
http://www.indiana.edu
http://www.indiana.edu/~iufcs/issue7/solving.shtml

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>