Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain "avalanches" may help store memories

27.01.2005


Neurochemicals might someday improve life for people with memory problems



Meeting a friend you haven’t seen in years brings on a sudden surge of pleasant memories. You might even call it an avalanche.

Recent studies suggest that avalanches in your brain could actually help you to store memories. Last year, scientists at the National Institutes of Health placed slices of rat brain tissue on a microelectrode array and found that the brain cells activated each other in cascades called "neuronal avalanches."


New computer models now suggest that these brain avalanches may be optimal for information storage. If so, certain neurochemical treatments might someday improve life for people with memory problems. A report of this work will be published Feb. 4 in the journal Physical Review Letters. "When most people think of an avalanche, they imagine something huge," said biophysicist John Beggs, now a professor in the Biocomplexity Institute at Indiana University Bloomington, who helped perform the NIH experiments. "But avalanches come in all sizes, and the smaller ones are most common. That’s just what we found in the brain cells."

An avalanche roaring down a mountainside may seem to be wildly out of control, but actually it is governed by certain equations. These same equations also govern such seemingly unrelated events as forest fires and earthquakes -- as well as some neural activity in the brain, Beggs said. All are examples of phenomena that can be studied with the new science of complexity, which deals with all kinds of complex systems ranging from living cells to national economies.

Biocomplexity is a cross-disciplinary field involving physics, chemistry, computer science, mathematics and the life sciences. A description of the IU Biocomplexity Institute, headquartered in IU Bloomington’s Department of Physics, is available at http://www.indiana.edu/~iufcs/issue7/solving.shtml.

To find out the possible benefits of brain avalanches, Beggs and IU senior Clay Haldeman simulated the spreading activity of brain cells in a computer model. When the activity was tuned to mimic the avalanches seen in brain tissue, a large number of stable activity patterns appeared. Stable activity patterns are thought to be important for memory, since they have been recorded in the brains of monkeys and rats after they perform memory tasks, Beggs said. "The fact that the most stable activity patterns appeared when the network of brain cells was also producing avalanches hints that the brain may actually use avalanches to store information," Beggs said.

"This work might ultimately help human memory," he explained. "If our computer simulations apply to networks of human brain cells, then it would be desirable to have your brain in a state where it naturally produces avalanches. In the laboratory, we can apply neurochemicals to defective networks of rat brain cells, gently easing them into a state where avalanches occur. These chemicals suggest treatments that might someday improve information storage in people with memory problems."

This research was funded by the National Science Foundation.

Hal Kibbey | EurekAlert!
Further information:
http://www.indiana.edu
http://www.indiana.edu/~iufcs/issue7/solving.shtml

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>