Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic researchers identify new form of muscular dystrophy in adults


Mayo Clinic researchers have identified a previously unknown form of muscular dystrophy, a group of genetic diseases characterized by progressive weakness and muscle degeneration. This newly identified form develops after age 40 and causes heart muscle damage, limb muscle weakness and nerve damage. The researchers have named the newly defined disorder "zaspopathy" (Zas-PO-path-ee).

Some 50,000 Americans have some form of muscular dystrophy, and there are currently no cures. Mayo Clinic researchers note that their work may help contribute to a cure because it increases the understanding of the muscular dystrophy disease process and the role genes play in it. They say their research is a crucial first step toward discovering treatments, because genes offer a promising target at which aim new therapies. The report on the discovery will appear in the Jan. 26 online version of the journal Annals of Neurology.

The Mayo Clinic researchers found that any one of three mutations in the gene that supplies the instructions for creating a protein known as " ZASP" can cause the newly defined disorder. The genes involved in zaspopathy are passed along to offspring in a dominant manner. This means that a child will develop the disorder by inheriting one copy of the mutant gene from one parent. The Mayo Clinic researchers tentatively named the new syndrome "zaspopathy" after the affected ZASP protein.

Significance of the Mayo Clinic Research

The identification of this new form of muscular dystrophy highlights the importance of scientific collaborations and the integration of different kinds of data. Laboratory information from ZASP alone was not enough to clarify the finding; clinical data from a large patient base was also necessary to support the clues given by ZASP. "The fact that we could pull together all different types of data and that it all pointed to the ZASP protein was key to the success of this effort," says Duygu Selcen, M.D., the Mayo Clinic neurologist who led the study.

Mayo Clinic is uniquely suited to efficiently access and integrate data because the patient care mission of Mayo Clinic provides researchers so much access to many forms of medical information, according to Dr. Selcen. These forms of information include clinical observation of patients, analysis of diseased and healthy tissue samples, as well as genetic and molecular investigations.

The discovery of zaspopathy is also important because it supports the "candidate gene" approach for finding mutations that can cause human disease. "In this approach, we select specific genes to examine based on a detailed knowledge of how a disease affects a particular part of the body," says Andrew Engel, M.D., a Mayo Clinic neurologist who worked on the project. Dr. Engel explains that the results with zaspopathy show the usefulness of the candidate gene in speeding up and simplifying the search for therapies and cures.

About Muscular Dystrophy

Muscular dystrophy is a group of rare inherited muscle diseases in which muscle fibers are unusually susceptible to damage. The different forms of the disease are distinctive in the inheritance pattern, primary muscles and genes affected, and prognosis, according to the National Institute of Neurological Disorders and Stroke .

Disability caused by muscular dystrophy falls on a continuum from mild weakness and loss of strength to premature death, usually in the 20s. In most forms of muscular dystrophy, it is primarily the muscles that control movement that become progressively weaker. However, in some types of muscular dystrophy, heart and other involuntary muscles and other organs are also affected. While there is no cure, various therapies, medications or orthopedic surgeries can slow the course of most forms.

Lisa Lucier | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>