Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers identify new form of muscular dystrophy in adults

26.01.2005


Mayo Clinic researchers have identified a previously unknown form of muscular dystrophy, a group of genetic diseases characterized by progressive weakness and muscle degeneration. This newly identified form develops after age 40 and causes heart muscle damage, limb muscle weakness and nerve damage. The researchers have named the newly defined disorder "zaspopathy" (Zas-PO-path-ee).



Some 50,000 Americans have some form of muscular dystrophy, and there are currently no cures. Mayo Clinic researchers note that their work may help contribute to a cure because it increases the understanding of the muscular dystrophy disease process and the role genes play in it. They say their research is a crucial first step toward discovering treatments, because genes offer a promising target at which aim new therapies. The report on the discovery will appear in the Jan. 26 online version of the journal Annals of Neurology.

The Mayo Clinic researchers found that any one of three mutations in the gene that supplies the instructions for creating a protein known as " ZASP" can cause the newly defined disorder. The genes involved in zaspopathy are passed along to offspring in a dominant manner. This means that a child will develop the disorder by inheriting one copy of the mutant gene from one parent. The Mayo Clinic researchers tentatively named the new syndrome "zaspopathy" after the affected ZASP protein.


Significance of the Mayo Clinic Research

The identification of this new form of muscular dystrophy highlights the importance of scientific collaborations and the integration of different kinds of data. Laboratory information from ZASP alone was not enough to clarify the finding; clinical data from a large patient base was also necessary to support the clues given by ZASP. "The fact that we could pull together all different types of data and that it all pointed to the ZASP protein was key to the success of this effort," says Duygu Selcen, M.D., the Mayo Clinic neurologist who led the study.

Mayo Clinic is uniquely suited to efficiently access and integrate data because the patient care mission of Mayo Clinic provides researchers so much access to many forms of medical information, according to Dr. Selcen. These forms of information include clinical observation of patients, analysis of diseased and healthy tissue samples, as well as genetic and molecular investigations.

The discovery of zaspopathy is also important because it supports the "candidate gene" approach for finding mutations that can cause human disease. "In this approach, we select specific genes to examine based on a detailed knowledge of how a disease affects a particular part of the body," says Andrew Engel, M.D., a Mayo Clinic neurologist who worked on the project. Dr. Engel explains that the results with zaspopathy show the usefulness of the candidate gene in speeding up and simplifying the search for therapies and cures.

About Muscular Dystrophy

Muscular dystrophy is a group of rare inherited muscle diseases in which muscle fibers are unusually susceptible to damage. The different forms of the disease are distinctive in the inheritance pattern, primary muscles and genes affected, and prognosis, according to the National Institute of Neurological Disorders and Stroke .

Disability caused by muscular dystrophy falls on a continuum from mild weakness and loss of strength to premature death, usually in the 20s. In most forms of muscular dystrophy, it is primarily the muscles that control movement that become progressively weaker. However, in some types of muscular dystrophy, heart and other involuntary muscles and other organs are also affected. While there is no cure, various therapies, medications or orthopedic surgeries can slow the course of most forms.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu
http://www3.interscience.wiley.com/cgi-bin/jissue/78504407

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>