Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technology detects human DNA mutations

26.01.2005


Rapid enzyme-free platform allows robust gene identification without gene amplification



Researchers at Nanosphere, Inc. today reported unprecedented benefits in the company’s technology for the medical analysis of human DNA.

Nanosphere’s nanoparticle-based technology allows for rapid, highly-sensitive and specific Single Nucleotide Polymorphism (SNP) genotyping, which is the direct detection of a particular gene and the extent to which it is normal or mutated. The technology, reported in the February 2005 (Volume 33, Number 2), issue of Nucleic Acids Research, allows detection of a SNP in an unknown genotype with a greater than 99 percent confidence threshold and can be used with human DNA obtained from samples as small as a drop of blood. Importantly, the technology eliminates the need for costly, time and labor intensive gene amplification or enzymatic interventions – two widespread methods currently used to perform such analyses.


"Nanosphere’s new SNP analysis methodology for whole genomic human DNA is a powerful example of the versatility of our proprietary ClearReadTM nanoparticle technology," said William Moffitt, Nanosphere’s President and CEO. "This study and the use of nanoparticles to dramatically increase sensitivity in our other proprietary applications -- such as bio-barcode for ultra sensitive detection of proteins -- demonstrate the broad applicability of nanotechnology and its potential to markedly advance the state-of-the-art in nucleic acid and proteomic research and diagnostics."

The analysis of whole human genomic DNA is extraordinarily complex as it requires sifting through the more than one billion base pairs of DNA to find a particular base pair of interest. Once that base pair is located, it is then necessary to determine if either of the bases is mutated (i.e., has SNPs). Nanosphere’s technology can rapidly, easily, and accurately interrogate both bases in the pair to determine if they are homozygous (i.e., both are mutant or normal) or heterozygous (i.e., one is mutant, one is normal) – the most critical step in correlating the SNP with a disease or drug sensitivity.

To do so, Nanosphere scientists employ a two-step process called ClearReadTM technology. This method sandwiches a target DNA SNP segment between two oligonucleotide sequences to greatly increase detection specificity and sensitivity. One segment identifies any mutations in the DNA and the probe, a highly sensitive gold nanoparticle, creates a strong signal accurately indicating the presence of a specific target SNP. Proof of principle, reproducibility, and the robust, simple and rapid characteristics of this technology were demonstrated with unamplified DNA samples representing all possible forms of three genes implicated in hypercoagulation disorders.

Wendy Emanuel | EurekAlert!
Further information:
http://www.nanosphere-inc.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>