Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic researchers discover new kind of heart failure gene


Genetic defect leads to electrical instability and mechanical pump failure

In genetic mapping of a large family with several members affected by a type of heart failure called dilated cardiomyopathy (DCM), the Mayo Clinic team found a defect in a gene on chromosome 3 called SCN5A. By scanning 156 unrelated patients with DCM, they found four additional mutations in the same gene. SCN5A is the gene that encodes the sodium ion channel in the heart, which helps regulate transport of positively charged sodium ions, and therefore the heart’s electrical patterns.

Among the individuals with an SCN5A mutation, 27 percent had early features of DCM, 38 percent had full-blown DCM and 43 percent had atrial fibrillation, a rhythm abnormality in the upper chambers of the heart. "Ironically, the fact that this gene encoding the sodium channel has been strongly implicated in heart rhythm disturbances may have hindered identification of its role in heart failure," says Timothy Olson, M.D. the Mayo Clinic pediatric cardiologist who led the study. "In previous studies of patients and families searching for mutations in this gene, those with structural heart disease such as DCM were normally excluded from consideration in order to better focus on the rhythm disorders. With this new study, we see that heart failure is another important manifestation of this genetic defect."

A Mayo Clinic study led by co-author Virginia Michels, M.D., and published in New England Journal of Medicine in 1992, established the importance of genetics in DCM. Until now, the mutations shown to cause DCM have mainly been related to the proteins involved in the heart’s structure and contraction. The new study is important because it establishes another mechanism for heart failure involving the regulation of sodium ion flow, not structural protein defects.

"Our findings may broaden the indications for genetic screening of SCN5A beyond isolated rhythm disorders," says Dr. Olson. "Since these variations hinder sodium transport, it may be wise to avoid using sodium channel-blocking drugs in heart failure patients with SCN5A mutations, because those drugs may make the problem worse. We need more studies to better define how sodium channel defects cause heart failure, and should begin long-term studies of patients with rhythm disturbances caused by SCN5A, to see whether they also are at risk for DCM."

Lee Aase | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>