Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme, lost in most mammals, is shown to protect against UV-induced skin cancer

26.01.2005


In a finding that broadens our insight into the cause of certain kinds of UV-induced skin cancer, researchers at Erasmus University Medical Center (Rotterdam, The Netherlands) have employed an evolutionarily ancient enzyme-repair system to identify the principal type of DNA damage responsible for the onset of skin-tumor development. The researchers’ findings also suggest that this enzyme system may be useful in developing preventative therapies against skin cancer.



Ultraviolet light is a known source of damage to our DNA, but under normal conditions humans and other mammals are capable of removing UV-induced DNA damage by a DNA repair mechanism called nucleotide excision repair. Insufficient repair of UV-induced DNA damage, which for example may occur after excessive unprotected sunbathing, can lead to cellular death – recognized as sunburn of the skin – and may cause permanent changes in the DNA (mutations) that ultimately can result in the onset of skin cancer. Thus far it was not clear how the two major types of UV-induced DNA lesions – cyclobutane pyrimidine dimers (CPDs) and (6-4)photoproducts (6-4PPs) – contribute to the processes of cell death and cancer formation. Identifying the relative contributions of the two types of damage to tumor formation is critical for the development of therapies that could help prevent skin cancer. Moreover, CPDs and 6-4PPs have particular potential to cause lasting damage to mammalian cells because photolyases – a class of enzymes capable of efficiently repairing these lesions – have apparently been lost from placental mammals over the course of evolution.

Thus, most mammals, including humans, can only repair these lesions through a much less direct and elaborate process called nucleotide excision repair.


In the new work, Dr. Bert van der Horst and colleagues studied the effects of CPD and 6-4PP lesions by providing mice with transgenes encoding CPD and 6-4PP photolyase enzymes.

Although mice do not ordinarily produce these enzymes, which remove either CPD or 6-4PP lesions by using visible light as an energy source, expression of the transgenes allowed rapid photolyase-mediated repair of these lesions. The researchers found that transgenic mice bearing the CPD photolyase transgene, in contrast to mice bearing the 6-4PP photolyase transgene, showed superior resistance to the deleterious effects of UV irradiation. Not only could CPD photolyase transgenic animals withstand doses of UV light that cause severe sunburn in normal mice, but they also showed superior resistance to UV-induced skin cancer. This work clearly points to CPD lesions as the major intermediate in UV-induced cellular damage leading to non-melanoma skin cancer. Importantly, it also suggests that photolyases may be successfully employed as a genetic tool to combat UV-induced skin cancer.

Judith Jans, Wouter Schul, Yurda-Gul Sert, Yvonne Rijksen, Heggert Rebel, Andre P.M. Eker, Satoshi Nakajima, Harry van Steeg, Frank R. de Gruijl, Akira Yasui, Jan H.J. Hoeijmakers, Gijsbertus T.J. van der Horst: "Powerful Skin Cancer Protection by a CPD-Photolyase Transgene"

The other members of the research team include Judith Jans of Erasmus University Medical Center, Rotterdam, presently at University of California, Berkeley; Wouter Schul of Erasmus University Medical Center, Rotterdam and Tohoku University; Yurda-Gul Sert, Yvonne Rijksen, Andre P.M. Eker, Jan H.J. Hoeijmakers, and Gijsbertus T.J. van der Horst of Erasmus University Medical Center, Rotterdam; Heggert Rebel and Frank R. de Gruijl of Leiden University Medical Center; Satoshi Nakajima of Novartis, Institute of Tropical Disease, Singapore; Harry van Steeg of National Institute of Public Health and the Environment in Bilthoven, The Netherlands; and Akira Yasui of Tohoku University. This work was supported by the Dutch Cancer Foundation, the Association for International Cancer Research, and the Japanese Ministry of Education, Science, and Culture.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>