Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory on evolution of essential genes is overturned by new finding

26.01.2005


A gene passed on by fathers that plays a vital role in helping fertilised eggs to develop into adults has helped scientists overturn the idea that essential genes have always been part of the genetic makeup of a species.

The research, published in the journal Current Biology tomorrow (26 January 2005), shows that an essential ‘paternal effect’ gene was created only recently in the evolutionary history of the fruit fly, Drosophila. This finding is remarkable because it shows that new genes with new functions - including essential functions - can evolve at any time.

The researchers made the discovery as part of a project to produce the first molecular genetic characterisation of a paternal effect gene. Paternal effect genes are important because without them a fertilised egg cannot develop into an adult. Similar genes are most likely present in other animals, including humans. Using molecular techniques, the researchers found that the Drosophila paternal effect gene they were characterising was only present in the melanogaster sub-group of fruit fly, but its progenitor, or ancestor, was present in all of the different sub-groups. Using statistical information about the rate at which genes evolve, the researchers worked out that the gene was only about 1-2 million years old, and much younger than the majority of the genes in the remainder of the fruit fly genome.



This finding, that an essential gene has a relatively recent origin, overturns the conventional notion that genes with vital functions must have been created a long time ago, but raises important questions about why and how this particular gene evolved. “This discovery really changes our concept of how new gene function can evolve, which is a major issue for evolutionary biology,” said Dr Tim Karr from the University of Bath, who made the discovery with colleagues in the Centre de Genetique Moleculaire et Cellulaire in France and the University of Chicago. “It is remarkable to think that through a range of random, naturally-occurring genetic changes over a few million years, a new essential gene has evolved. Obviously other species of fruit fly don’t need this gene but they may have other genes that serve a similar function. At first the gene may have conveyed some as yet unknown benefit that eventually became essential during the course of evolution. It could even have been involved in the early processes leading to speciation of this group of fruit flies,” said Dr Karr.
Dr Steve Dorus from the University of Chicago, who collaborated on the project, will be joining the Karr laboratory at the University of Bath this month to continue studies on this, and other paternal genes. “The fact that this essential, newly-evolved gene is a male factor that is required for successful embryo development after fertilisation makes it all the more interesting. Paternal effect genes have only recently become the subject of scientific investigation, and the genetic characterisation of this gene will help further investigations in this area,” said Dr Karr.“I would be very surprised if there were not more examples of paternal effect genes spread throughout the animal kingdom. Because we know so much about the relatively simple genetic makeup of the fruit fly, it is yet another example of where Drosophila can help us understand important genetic processes throughout the animal kingdom, including humans.”

The research was funded by the Royal Society.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/pr/releases/essentialgenes.htm

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>