Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lack of enzyme turns fat cells into fat burners


Lack of the enzyme, acetyl CoA carboxylase 2 or ACC2, appears to turn the adipose or fat cells of mice into fat burners, explaining in part why the animals can eat more and weigh less than their normal counterparts, said Baylor College of Medicine researchers. The report that appears online today in the Proceedings of the National Academy of Sciences.

"We studied the fat cells in these mice bred to lack ACC2," said Dr. Salih Wakil, chair of the BCM department of biochemistry and molecular biology. "We found that the adipose in the mutant mice are now oxidizing fat, hydrolyzing (breaking down using water) fat, and passing it on to the heart and muscle because there is an increase in oxidation of fat in those organs. It also starts oxidizing glucose. In other words, the adipose tissue is becoming a little more oxidative and less involved in the synthesis and storage of fat. We feel this contributes to the status of the animal."

In prior studies, Wakil and his colleagues have demonstrated the effect ACC2 has on mice. Mice bred to lack the enzyme can eat a high fat, high carbohydrate diet without gaining weight, while their normal counterparts become obese and develop type 2 diabetes. "This adds another tissue or organ that helps out in the process of energy maintenance," said Wakil. "ACC2 is potentially a key enzyme in the regulation of weight, obesity, and related problems."

Wakil and his colleagues studied the oxidation of fatty acid and glucose in cultures of fat cells isolated from both normal and mutant mice that lacked ACC2. When the mice were fed a normal diet, fatty acid oxidation was 80 percent higher in the fat cells of the mice lacking ACC2 when compared to normal mice. When they were fed a high fat, high carbohydrate diet for four to five months, the ACC2-deficient mice had a 25 percent higher rate of fatty acid oxidation and twofold higher rate of glucose oxidation than the normal mice.

Others who participated in the research included Drs. WonKeun Oh, Lutfi Abu-Elheiga, Parichher Kordari, Zeiwei Gu, Tattym Shaikenov, Subrahmanyam S. Chirala. The work was supported in part by by the Clayton Foundation for Research and the National Institutes of Health.

Meg Bolton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>