Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New leukemia drug shows promise in overriding all Gleevec resistance

25.01.2005


Temple University researchers have developed a new drug that could potentially treat all forms of Gleevec-resistant chronic myelogenous leukemia (CML). Their work is published in this week’s early edition of Proceedings of the National Academy of Sciences.



According to lead researcher, Prem Reddy, Ph.D., professor of biochemistry and Director of the Fels Institute for Cancer Research at Temple University School of Medicine, most patients with advanced CML, a rare but deadly form of cancer, typically develop resistance to Gleevec, the most successful treatment for CML to date, within a few years of starting the therapy.

CML is caused by the Philadelphia chromosome, an abnormality that produces a cancer protein called BCR-ABL. Gleevec works by binding to BCR-ABL and completely blocking its activity, thereby stopping cancer growth. When Gleevec came to market about four years ago, it was widely hailed as a miracle drug. For the first time, there was hope for this group of patients.


"Gleevec has been a remarkable success for the treatment of CML. However, a significant number of patients eventually develop resistance to it because their cancer cells are able to mutate and adapt," said Reddy.

Since discovering this phenomenon, scientists have sought new ways to prevent or overcome this resistance. Recently, two experimental drugs were found to be effective in circumventing some but not all forms of Gleevec resistance. Both, for instance, failed to block the activity of a mutant BCR-ABL, called T315I, which is one of the more predominant mutations seen in Gleevec-resistant patients.

Reddy and his research team sought instead to develop a drug that would circumvent all of the mutations and therefore all forms of resistance. They focused on other possible avenues to inhibit the actions of BCR-ABL. To do so, they targeted parts of the BCR-ABL protein that didn’t appear to be mutating and adapting to Gleevec.

"We developed ON012380, a compound that specifically inhibits BCR-ABL by blocking a different site in the protein, which is essential for its activity. As a result, ON012380 was found to induce cell death of all of the known Gleevec-resistant mutants and cause regression of leukemias in human tumor cells and in animal models," said Reddy, who is currently seeking FDA approval to proceed with clinical trials. The drug is licensed to Onconova, Inc.

"Our drug works just like Gleevec but by blocking another part of the BCR-ABL protein. It can be combined with Gleevec to create synergy and when patients become resistant to Gleevec, our drug kills 100 percent of the cancer cells," said Reddy.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>