Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New leukemia drug shows promise in overriding all Gleevec resistance

25.01.2005


Temple University researchers have developed a new drug that could potentially treat all forms of Gleevec-resistant chronic myelogenous leukemia (CML). Their work is published in this week’s early edition of Proceedings of the National Academy of Sciences.



According to lead researcher, Prem Reddy, Ph.D., professor of biochemistry and Director of the Fels Institute for Cancer Research at Temple University School of Medicine, most patients with advanced CML, a rare but deadly form of cancer, typically develop resistance to Gleevec, the most successful treatment for CML to date, within a few years of starting the therapy.

CML is caused by the Philadelphia chromosome, an abnormality that produces a cancer protein called BCR-ABL. Gleevec works by binding to BCR-ABL and completely blocking its activity, thereby stopping cancer growth. When Gleevec came to market about four years ago, it was widely hailed as a miracle drug. For the first time, there was hope for this group of patients.


"Gleevec has been a remarkable success for the treatment of CML. However, a significant number of patients eventually develop resistance to it because their cancer cells are able to mutate and adapt," said Reddy.

Since discovering this phenomenon, scientists have sought new ways to prevent or overcome this resistance. Recently, two experimental drugs were found to be effective in circumventing some but not all forms of Gleevec resistance. Both, for instance, failed to block the activity of a mutant BCR-ABL, called T315I, which is one of the more predominant mutations seen in Gleevec-resistant patients.

Reddy and his research team sought instead to develop a drug that would circumvent all of the mutations and therefore all forms of resistance. They focused on other possible avenues to inhibit the actions of BCR-ABL. To do so, they targeted parts of the BCR-ABL protein that didn’t appear to be mutating and adapting to Gleevec.

"We developed ON012380, a compound that specifically inhibits BCR-ABL by blocking a different site in the protein, which is essential for its activity. As a result, ON012380 was found to induce cell death of all of the known Gleevec-resistant mutants and cause regression of leukemias in human tumor cells and in animal models," said Reddy, who is currently seeking FDA approval to proceed with clinical trials. The drug is licensed to Onconova, Inc.

"Our drug works just like Gleevec but by blocking another part of the BCR-ABL protein. It can be combined with Gleevec to create synergy and when patients become resistant to Gleevec, our drug kills 100 percent of the cancer cells," said Reddy.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>