Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New leukemia drug shows promise in overriding all Gleevec resistance


Temple University researchers have developed a new drug that could potentially treat all forms of Gleevec-resistant chronic myelogenous leukemia (CML). Their work is published in this week’s early edition of Proceedings of the National Academy of Sciences.

According to lead researcher, Prem Reddy, Ph.D., professor of biochemistry and Director of the Fels Institute for Cancer Research at Temple University School of Medicine, most patients with advanced CML, a rare but deadly form of cancer, typically develop resistance to Gleevec, the most successful treatment for CML to date, within a few years of starting the therapy.

CML is caused by the Philadelphia chromosome, an abnormality that produces a cancer protein called BCR-ABL. Gleevec works by binding to BCR-ABL and completely blocking its activity, thereby stopping cancer growth. When Gleevec came to market about four years ago, it was widely hailed as a miracle drug. For the first time, there was hope for this group of patients.

"Gleevec has been a remarkable success for the treatment of CML. However, a significant number of patients eventually develop resistance to it because their cancer cells are able to mutate and adapt," said Reddy.

Since discovering this phenomenon, scientists have sought new ways to prevent or overcome this resistance. Recently, two experimental drugs were found to be effective in circumventing some but not all forms of Gleevec resistance. Both, for instance, failed to block the activity of a mutant BCR-ABL, called T315I, which is one of the more predominant mutations seen in Gleevec-resistant patients.

Reddy and his research team sought instead to develop a drug that would circumvent all of the mutations and therefore all forms of resistance. They focused on other possible avenues to inhibit the actions of BCR-ABL. To do so, they targeted parts of the BCR-ABL protein that didn’t appear to be mutating and adapting to Gleevec.

"We developed ON012380, a compound that specifically inhibits BCR-ABL by blocking a different site in the protein, which is essential for its activity. As a result, ON012380 was found to induce cell death of all of the known Gleevec-resistant mutants and cause regression of leukemias in human tumor cells and in animal models," said Reddy, who is currently seeking FDA approval to proceed with clinical trials. The drug is licensed to Onconova, Inc.

"Our drug works just like Gleevec but by blocking another part of the BCR-ABL protein. It can be combined with Gleevec to create synergy and when patients become resistant to Gleevec, our drug kills 100 percent of the cancer cells," said Reddy.

Eryn Jelesiewicz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>