Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New leukemia drug shows promise in overriding all Gleevec resistance

25.01.2005


Temple University researchers have developed a new drug that could potentially treat all forms of Gleevec-resistant chronic myelogenous leukemia (CML). Their work is published in this week’s early edition of Proceedings of the National Academy of Sciences.



According to lead researcher, Prem Reddy, Ph.D., professor of biochemistry and Director of the Fels Institute for Cancer Research at Temple University School of Medicine, most patients with advanced CML, a rare but deadly form of cancer, typically develop resistance to Gleevec, the most successful treatment for CML to date, within a few years of starting the therapy.

CML is caused by the Philadelphia chromosome, an abnormality that produces a cancer protein called BCR-ABL. Gleevec works by binding to BCR-ABL and completely blocking its activity, thereby stopping cancer growth. When Gleevec came to market about four years ago, it was widely hailed as a miracle drug. For the first time, there was hope for this group of patients.


"Gleevec has been a remarkable success for the treatment of CML. However, a significant number of patients eventually develop resistance to it because their cancer cells are able to mutate and adapt," said Reddy.

Since discovering this phenomenon, scientists have sought new ways to prevent or overcome this resistance. Recently, two experimental drugs were found to be effective in circumventing some but not all forms of Gleevec resistance. Both, for instance, failed to block the activity of a mutant BCR-ABL, called T315I, which is one of the more predominant mutations seen in Gleevec-resistant patients.

Reddy and his research team sought instead to develop a drug that would circumvent all of the mutations and therefore all forms of resistance. They focused on other possible avenues to inhibit the actions of BCR-ABL. To do so, they targeted parts of the BCR-ABL protein that didn’t appear to be mutating and adapting to Gleevec.

"We developed ON012380, a compound that specifically inhibits BCR-ABL by blocking a different site in the protein, which is essential for its activity. As a result, ON012380 was found to induce cell death of all of the known Gleevec-resistant mutants and cause regression of leukemias in human tumor cells and in animal models," said Reddy, who is currently seeking FDA approval to proceed with clinical trials. The drug is licensed to Onconova, Inc.

"Our drug works just like Gleevec but by blocking another part of the BCR-ABL protein. It can be combined with Gleevec to create synergy and when patients become resistant to Gleevec, our drug kills 100 percent of the cancer cells," said Reddy.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>