Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Shows in the Animal World, it Pays to be an Imposter

20.01.2005


For the giant Australian cuttlefish, mating is a complicated undertaking complete with fighting, sneaking, and deception. In this week’s issue of the journal Nature, Marine Biological Laboratory (MBL) senior scientist Roger Hanlon and his colleagues demonstrate that for this species, deception while mating pays off.



Hanlon and his team present behavioral and genetic data demonstrating that small male cuttlefish that dramatically alter their appearance to look like females are highly successful in tricking their often larger male competitors and fertilizing the female’s eggs. While the sexual mimicry that the cuttlefish employ has been widely reported in nature, this is the first time fertilization success in an animal using this strategy has been documented.

Hanlon and his colleagues studied the cuttlefish (Sepia apama) in a remote coastal area of the Australian outback. For ten days they painstakingly observed and filmed the intense mating competition between the females and their suitors, including large “guard” males, smaller “sneaker” males, who attempt to mate with females as the guard fights other males, and males who mimic the appearance of a female. In contrast to some other animals, whose ability to mimic is part of their genetic makeup, giant Australian cuttlefish use neural control to instantly change their skin patterning, posture, and tactics. According to Hanlon the cuttlefish can switch between a male and female appearance 10 to 15 times per minute. “In the blink of an eye they can pull out of it and go back to being a male,” he says.


Using DNA fingerprinting, Hanlon and his team found that the mimickers were successful in fertilizing females 60 percent of the time. The results, they say, are surprising since female cuttlefish of this species reject most mating attempts by any type of male 70 percent of the time. “This is not an easy behavior to study,” says Hanlon. “But we hope that our paper will engage other behavioral ecologists to go out and study mating systems of other animals to refute or support what we found.”

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>