Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spleen may be source of versatile stem cells

20.01.2005


Cells have protein associated with embryonic development, limb regeneration



A year ago, Massachusetts General Hospital (MGH) researchers discovered that the spleen might be a source of adult stem cells that could regenerate the insulin-producing islets of the pancreas. In a follow-up to that unexpected finding, members of the same team now report that these potential adult stem cells produce a protein previously believed to be present only during the embryonic development of mammals.

The finding both supports the existence of these splenic stem cells and also suggests they may be able to produce an even greater variety of tissues. The report appears in the January 19 issue of SAGE KE (http://sageke.sciencemag.org ), an online resource on the science of aging from the publishers of the journal Science.


"There may be a previously undiscovered pocket of primitive stem cells in the spleen that are important for healing several types of damage or injury," says Denise Faustman, MD, PhD, director of the MGH Immunobiology Laboratory and senior author of the SAGE KE report. "If so, these cells could have much broader therapeutic applications than suggested by our earlier work."

In 2001 Faustman’s team found that a treatment designed to address the autoimmune reaction underlying type 1 diabetes actually cured the disease in diabetic mice. Late in 2003 they reported the mechanism behind the earlier discovery: cells from the spleens of donor mice – intended to train the diabetic animals’ immune systems not to attack islet cells – were actually producing new islets. The result suggested that the adult spleen – previously regarded as playing a fairly minor role in regenerative medicine – might contain a population of potential islet stem cells.

In their pursuit of that finding, the MGH researchers investigated the possible presence of a protein called Hox11 in these cells. In mammals, Hox11 is a controller of key steps in embryonic development – including the formation of the spleen – but it was not known to be present in adults under normal circumstances. In some other animals, however, the protein has an intriguing function: when creatures like newts regenerate a lost limb or tail, production of Hox11 is radically increased.

As reported in their SAGE KE article, the MGH team did find that Hox11 was produced in the spleens of adult mice by the same cells that regenerated the islets in the earlier study. They also found that these cells did not produce a protein known to be associated with a cellular commitment to develop into a particular type of tissue. Without that commitment, the splenic cells may be able to differentiate into a wider variety of cells than can adult stem cells from bone marrow, which do not produce Hox11.

The researchers also note that the spleen develops from embryonic tissue that is known not only to generate precursors to many types of blood cells, a function shared by the bone marrow, but potentially to form such diverse organs as the small intestine, uterus, vascular system and lung. They theorize that a pocket of these uncommitted cells might remain in the spleen though adulthood. In addition to regeneration of islets, these cells might also produce bone cells – suggested by findings from other researchers – or potentially even cells of the nervous system, development of which depends on the correct production of Hox11.

"We know that if you have a major loss of blood, the spleen is turned on to supplement the bone marrow in replenishing your blood supply. We may find that the spleen kicks in to help with many more biological emergencies. What has been considered a practically unnecessary organ may actually provide critical healing cells," says Faustman, an associate professor of Medicine at Harvard Medical School.

She adds, "This data also shows the kind of payback that can come from studies of lower animals like newts and sponges. Combining the knowledge of Hox11’s role in those animals with what we’d found about islet cell regeneration in mice helped us find this previously unknown example of normal, controlled Hox11 expression in an adult mammal."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu
http://sageke.sciencemag.org
http://www.joinleenow.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>