Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering the genetic babel of brain cells

20.01.2005


Gene chips, or microarrays, have proven to be immensely important in measuring the activity of thousands of genes at once in such cells as cancer cells or immune cells. The use of these chips has given scientists snapshots of gene activity that lead to better understanding of the genetic machinery of the cells. This understanding has led to new ways to kill cancers or to manipulate the immune system, for example.




Gene chips consist of vast arrays of thousands of specific genetic segments spotted onto tiny chips. When gene extracts of cells are applied to the chips, labeled with fluorescent indicators, genes from the cell extracts attach to their complementary counterparts on the chips. Measurements of the fluorescence of each spot give scientists an indication of the activity of particular genes.

As vital as they are to studies of individual types of cells, gene chips have proven to be less useful in efforts to understand the genetic signatures of specific brain cells, because a myriad of subtly different subtypes of brain cells are intertwined in brain tissue.


Now, however, researchers led by Jeffrey Macklis, Bradley Molyneaux, and Paola Arlotta of the MGH-HMS Center for Nervous System Repair at Harvard Medical School and Massachusetts General Hospital and Harvard Stem Cell Institute have developed a way to distinguish particular brain cell subtypes in tissue and to separate them for genetic analysis with microarrays. Their technique will prove enormously helpful to neuroscientists studying the development and function of the brain. For example, it will enable researchers to genetically tag, manipulate, and even knock out the function of specific subtypes of neurons to study their function. Also, by comparing genetic profiles of cells in normal and diseased brains, researchers can gain invaluable clues to the origins of neurological disorders.

In their technique, the scientists first labeled a specific brain cell in living brain tissue using fluorescent microspheres. They then used microdissection, biochemical methods, and fluorescence-activated cell sorting to separate out the particular brain cell subtype for genetic analysis using DNA microarrays. Such cell sorting isolates those cells that have absorbed the fluorescent microspheres.

In their paper, the scientists report using their new technique to unravel the genes that are active in corticospinal motor neurons (CSMN), which connect the cortex and spinal cord and carry the signals that operate muscles. These neurons are important because their degeneration contributes critically to amyotrophic lateral sclerosis (Lou Gehrig’s disease) and to the loss of muscle function in spinal cord injury. Better understanding of the genes that control the development of these neurons could aid in the development of treatments for these disorders.

In their experiments, the scientists isolated the neurons and analyzed the genes that were active in CSMNs during stages of embryonic development in mice. They compared these active genes with those of two other closely related subtypes of such cortical neurons to discover specific genes that are likely critical to CSMN development.

To demonstrate that their technique had, indeed, identified functionally important genes, they knocked out one of the genes, called Ctip2, in mice. The resulting animal had defects in the connections between the cortex and spinal cord that showed that the gene was critical for CSMN development.

"The data here support the idea that a precise molecular classification of distinct classes of projection neurons is possible and provide a foundation for increasingly sophisticated analysis of stage-specific genes controlling corticospinal motor neuron development," concluded the scientists.

Paola Arlotta, Bradley J. Molyneaux, Jinhui Chen, Jun Inoue, Ryo Kominami, and Jeffrey D. Macklis: "Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo"

The other members of the research team included Jinhui Chen of the MGH-HMS Center for Nervous System Repair at Harvard Medical School and Massachusetts General Hospital and the Harvard Stem Cell Institute [presently at the Spinal Cord and Brain Injury Research Center of University of Kentucky]; and Jun Inoue and Ryo Kominami of the Graduate School of Medical and Dental Sciences at Niigata University. This work was partially supported by grants from the NIH, Christopher Reeve Paralysis Foundation, and ALS Association (to J.D.M.). P.A. was supported by a Wills Foundation Postdoctoral Fellowship. B.J.M. was supported by the Harvard M.S.T.P..

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>