Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deciphering the genetic babel of brain cells


Gene chips, or microarrays, have proven to be immensely important in measuring the activity of thousands of genes at once in such cells as cancer cells or immune cells. The use of these chips has given scientists snapshots of gene activity that lead to better understanding of the genetic machinery of the cells. This understanding has led to new ways to kill cancers or to manipulate the immune system, for example.

Gene chips consist of vast arrays of thousands of specific genetic segments spotted onto tiny chips. When gene extracts of cells are applied to the chips, labeled with fluorescent indicators, genes from the cell extracts attach to their complementary counterparts on the chips. Measurements of the fluorescence of each spot give scientists an indication of the activity of particular genes.

As vital as they are to studies of individual types of cells, gene chips have proven to be less useful in efforts to understand the genetic signatures of specific brain cells, because a myriad of subtly different subtypes of brain cells are intertwined in brain tissue.

Now, however, researchers led by Jeffrey Macklis, Bradley Molyneaux, and Paola Arlotta of the MGH-HMS Center for Nervous System Repair at Harvard Medical School and Massachusetts General Hospital and Harvard Stem Cell Institute have developed a way to distinguish particular brain cell subtypes in tissue and to separate them for genetic analysis with microarrays. Their technique will prove enormously helpful to neuroscientists studying the development and function of the brain. For example, it will enable researchers to genetically tag, manipulate, and even knock out the function of specific subtypes of neurons to study their function. Also, by comparing genetic profiles of cells in normal and diseased brains, researchers can gain invaluable clues to the origins of neurological disorders.

In their technique, the scientists first labeled a specific brain cell in living brain tissue using fluorescent microspheres. They then used microdissection, biochemical methods, and fluorescence-activated cell sorting to separate out the particular brain cell subtype for genetic analysis using DNA microarrays. Such cell sorting isolates those cells that have absorbed the fluorescent microspheres.

In their paper, the scientists report using their new technique to unravel the genes that are active in corticospinal motor neurons (CSMN), which connect the cortex and spinal cord and carry the signals that operate muscles. These neurons are important because their degeneration contributes critically to amyotrophic lateral sclerosis (Lou Gehrig’s disease) and to the loss of muscle function in spinal cord injury. Better understanding of the genes that control the development of these neurons could aid in the development of treatments for these disorders.

In their experiments, the scientists isolated the neurons and analyzed the genes that were active in CSMNs during stages of embryonic development in mice. They compared these active genes with those of two other closely related subtypes of such cortical neurons to discover specific genes that are likely critical to CSMN development.

To demonstrate that their technique had, indeed, identified functionally important genes, they knocked out one of the genes, called Ctip2, in mice. The resulting animal had defects in the connections between the cortex and spinal cord that showed that the gene was critical for CSMN development.

"The data here support the idea that a precise molecular classification of distinct classes of projection neurons is possible and provide a foundation for increasingly sophisticated analysis of stage-specific genes controlling corticospinal motor neuron development," concluded the scientists.

Paola Arlotta, Bradley J. Molyneaux, Jinhui Chen, Jun Inoue, Ryo Kominami, and Jeffrey D. Macklis: "Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo"

The other members of the research team included Jinhui Chen of the MGH-HMS Center for Nervous System Repair at Harvard Medical School and Massachusetts General Hospital and the Harvard Stem Cell Institute [presently at the Spinal Cord and Brain Injury Research Center of University of Kentucky]; and Jun Inoue and Ryo Kominami of the Graduate School of Medical and Dental Sciences at Niigata University. This work was partially supported by grants from the NIH, Christopher Reeve Paralysis Foundation, and ALS Association (to J.D.M.). P.A. was supported by a Wills Foundation Postdoctoral Fellowship. B.J.M. was supported by the Harvard M.S.T.P..

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>