Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA/VA researchers discover fat gene

19.01.2005


Finding may offer new target for controlling obesity, diabetes

UCLA/VA scientists have identified a new gene that controls how the body produces and uses fat. Called lipin, the gene may provide a new target for therapies to control obesity, diabetes and other weight-related disorders. The first issue of the new journal Cell Metabolism publishes the findings in its January 2005 edition.

"Lipin regulates how the body stores and burns fat. Our findings suggest that differences in lipin levels may play a role in why some people are more prone to weight gain than others who consume the same calories," said principal investigator Karen Reue, Ph.D., a professor of medicine and human genetics at the David Geffen School of Medicine at UCLA and a researcher at the Veterans Affairs Greater Los Angeles Healthcare System.



In 2001, Reue’s laboratory was the first to isolate the lipin gene and link it to lipodystrophy, a wasting disorder in which the body is unable to produce fat. She also found that too little lipin prevented both genetic and diet-related obesity.

For this study, Reue and coauthor Jack Phan, Ph.D., tested whether too much lipin would produce the opposite effect. Her team developed animal models using two sets of specially bred mice. Each group had a genetic mutation that boosted the level of lipin – one group in their fat tissue and the other group in their muscles.

When fed a high-fat diet for six weeks, the mice with elevated lipin in their fat or muscles showed accelerated weight gain – double the amount of weight gained by the normal mice. "The mice with too much lipin in their fat tissue or muscles quickly grew obese – gaining more than twice the weight gained by the normal mice on the same diet," said Reue. Although both sets of mice gained excessive weight, the researchers were surprised to see that the lipin affected fat tissue and muscles differently.

Lipin functions in diverse ways to affect body weight. While lipin in fat tissue influences the capacity of cells to store fat – lipin in muscle affects the rate at which the body expends energy and burns fat. "When we increased lipin in the muscle, the cells burned carbohydrates before fat. When lipin is absent, however, the cells burn fat before carbohydrates," explained Reue. "We saw a different effect when lipin acted on fat tissue," she noted. "High levels of lipin promoted fat storage. Lipin deficiency prevented the cells from forming and storing fat."

In other words, the mice with excess lipin in their fat gained weight because their cells stored more fat. The mice with more lipin in their muscle grew obese because the gene repressed their metabolism, causing them to burn fewer calories than normal mice.

In contrast, Reue’s study showed that lipin-deficient mice expended more energy to perform their daily activities. Because lipin moderates calorie use in muscle, its absence caused the mice to burn more calories to fulfill the same tasks as normal mice. "Our study suggests that variations in lipin levels could determine a person’s tendency to gain weight by influencing how their body stores and burns fat," explained Reue. "Prior to our research, scientists typically viewed obesity and emaciation as opposite ends of the spectrum caused by changes in different genes," Reue said. "Yet lipin is a single gene that can regulate body-fat content from one extreme to the other. As a result, it may present a target for the treatment of human diseases related to both excess and insufficient fat."

In an unexpected finding, the study also discovered that lipin levels helped the fat cells metabolize glucose more efficiently, leading to lower blood-sugar levels. The obese mice with excess lipin in their fat tissue demonstrated even lower blood-sugar levels than normal mice with regular levels of lipin. "Because obesity and lipodystrophy are both associated with insulin resistance and high blood sugar, we hope that our results may point to new therapies for diabetes," said Reue.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>