Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA/VA researchers discover fat gene

19.01.2005


Finding may offer new target for controlling obesity, diabetes

UCLA/VA scientists have identified a new gene that controls how the body produces and uses fat. Called lipin, the gene may provide a new target for therapies to control obesity, diabetes and other weight-related disorders. The first issue of the new journal Cell Metabolism publishes the findings in its January 2005 edition.

"Lipin regulates how the body stores and burns fat. Our findings suggest that differences in lipin levels may play a role in why some people are more prone to weight gain than others who consume the same calories," said principal investigator Karen Reue, Ph.D., a professor of medicine and human genetics at the David Geffen School of Medicine at UCLA and a researcher at the Veterans Affairs Greater Los Angeles Healthcare System.



In 2001, Reue’s laboratory was the first to isolate the lipin gene and link it to lipodystrophy, a wasting disorder in which the body is unable to produce fat. She also found that too little lipin prevented both genetic and diet-related obesity.

For this study, Reue and coauthor Jack Phan, Ph.D., tested whether too much lipin would produce the opposite effect. Her team developed animal models using two sets of specially bred mice. Each group had a genetic mutation that boosted the level of lipin – one group in their fat tissue and the other group in their muscles.

When fed a high-fat diet for six weeks, the mice with elevated lipin in their fat or muscles showed accelerated weight gain – double the amount of weight gained by the normal mice. "The mice with too much lipin in their fat tissue or muscles quickly grew obese – gaining more than twice the weight gained by the normal mice on the same diet," said Reue. Although both sets of mice gained excessive weight, the researchers were surprised to see that the lipin affected fat tissue and muscles differently.

Lipin functions in diverse ways to affect body weight. While lipin in fat tissue influences the capacity of cells to store fat – lipin in muscle affects the rate at which the body expends energy and burns fat. "When we increased lipin in the muscle, the cells burned carbohydrates before fat. When lipin is absent, however, the cells burn fat before carbohydrates," explained Reue. "We saw a different effect when lipin acted on fat tissue," she noted. "High levels of lipin promoted fat storage. Lipin deficiency prevented the cells from forming and storing fat."

In other words, the mice with excess lipin in their fat gained weight because their cells stored more fat. The mice with more lipin in their muscle grew obese because the gene repressed their metabolism, causing them to burn fewer calories than normal mice.

In contrast, Reue’s study showed that lipin-deficient mice expended more energy to perform their daily activities. Because lipin moderates calorie use in muscle, its absence caused the mice to burn more calories to fulfill the same tasks as normal mice. "Our study suggests that variations in lipin levels could determine a person’s tendency to gain weight by influencing how their body stores and burns fat," explained Reue. "Prior to our research, scientists typically viewed obesity and emaciation as opposite ends of the spectrum caused by changes in different genes," Reue said. "Yet lipin is a single gene that can regulate body-fat content from one extreme to the other. As a result, it may present a target for the treatment of human diseases related to both excess and insufficient fat."

In an unexpected finding, the study also discovered that lipin levels helped the fat cells metabolize glucose more efficiently, leading to lower blood-sugar levels. The obese mice with excess lipin in their fat tissue demonstrated even lower blood-sugar levels than normal mice with regular levels of lipin. "Because obesity and lipodystrophy are both associated with insulin resistance and high blood sugar, we hope that our results may point to new therapies for diabetes," said Reue.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>