Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA/VA researchers discover fat gene

19.01.2005


Finding may offer new target for controlling obesity, diabetes

UCLA/VA scientists have identified a new gene that controls how the body produces and uses fat. Called lipin, the gene may provide a new target for therapies to control obesity, diabetes and other weight-related disorders. The first issue of the new journal Cell Metabolism publishes the findings in its January 2005 edition.

"Lipin regulates how the body stores and burns fat. Our findings suggest that differences in lipin levels may play a role in why some people are more prone to weight gain than others who consume the same calories," said principal investigator Karen Reue, Ph.D., a professor of medicine and human genetics at the David Geffen School of Medicine at UCLA and a researcher at the Veterans Affairs Greater Los Angeles Healthcare System.



In 2001, Reue’s laboratory was the first to isolate the lipin gene and link it to lipodystrophy, a wasting disorder in which the body is unable to produce fat. She also found that too little lipin prevented both genetic and diet-related obesity.

For this study, Reue and coauthor Jack Phan, Ph.D., tested whether too much lipin would produce the opposite effect. Her team developed animal models using two sets of specially bred mice. Each group had a genetic mutation that boosted the level of lipin – one group in their fat tissue and the other group in their muscles.

When fed a high-fat diet for six weeks, the mice with elevated lipin in their fat or muscles showed accelerated weight gain – double the amount of weight gained by the normal mice. "The mice with too much lipin in their fat tissue or muscles quickly grew obese – gaining more than twice the weight gained by the normal mice on the same diet," said Reue. Although both sets of mice gained excessive weight, the researchers were surprised to see that the lipin affected fat tissue and muscles differently.

Lipin functions in diverse ways to affect body weight. While lipin in fat tissue influences the capacity of cells to store fat – lipin in muscle affects the rate at which the body expends energy and burns fat. "When we increased lipin in the muscle, the cells burned carbohydrates before fat. When lipin is absent, however, the cells burn fat before carbohydrates," explained Reue. "We saw a different effect when lipin acted on fat tissue," she noted. "High levels of lipin promoted fat storage. Lipin deficiency prevented the cells from forming and storing fat."

In other words, the mice with excess lipin in their fat gained weight because their cells stored more fat. The mice with more lipin in their muscle grew obese because the gene repressed their metabolism, causing them to burn fewer calories than normal mice.

In contrast, Reue’s study showed that lipin-deficient mice expended more energy to perform their daily activities. Because lipin moderates calorie use in muscle, its absence caused the mice to burn more calories to fulfill the same tasks as normal mice. "Our study suggests that variations in lipin levels could determine a person’s tendency to gain weight by influencing how their body stores and burns fat," explained Reue. "Prior to our research, scientists typically viewed obesity and emaciation as opposite ends of the spectrum caused by changes in different genes," Reue said. "Yet lipin is a single gene that can regulate body-fat content from one extreme to the other. As a result, it may present a target for the treatment of human diseases related to both excess and insufficient fat."

In an unexpected finding, the study also discovered that lipin levels helped the fat cells metabolize glucose more efficiently, leading to lower blood-sugar levels. The obese mice with excess lipin in their fat tissue demonstrated even lower blood-sugar levels than normal mice with regular levels of lipin. "Because obesity and lipodystrophy are both associated with insulin resistance and high blood sugar, we hope that our results may point to new therapies for diabetes," said Reue.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>