Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficient DNA repair capacity associated with increased risk of breast cancer

19.01.2005


Deficiencies in the ability of cells to repair damaged DNA are associated with an increased risk of breast cancer, according to a new study in the January 19 issue of the Journal of the National Cancer Institute.



DNA repair is the system of defenses designed to protect the integrity of the genome. Studies have suggested that deficiency in cells’ capacity for DNA repair contributes to the accumulation of DNA damage and accelerates the genetic changes involved in carcinogenesis.

To evaluate whether reduced DNA repair capacity in the nucleotide excision pathway that fixes DNA alterations known as bulky DNA adducts is associated with breast cancer risk, Regina M. Santella, Ph.D., of the Columbia University Mailman School of Public Health in New York, and colleagues analyzed cell lines generated from blood samples taken from pairs of sisters in which one sister had been diagnosed with breast cancer and the other had not.


They found that DNA repair capacity was lower in breast cancer patients than in the control subjects. Deficient DNA repair capacity was associated with a twofold increase in the risk of breast cancer. In addition, when the data were stratified into quartiles of DNA repair capacity, the risk of breast cancer was three times higher among women with the poorest DNA repair capacity compared with those with the highest.

"[T]hese data support the hypothesis that deficient DNA repair capacity is associated with susceptibility to breast cancer and may be a valuable in vitro biomarker to identify high-risk subjects, especially in familial breast cancer families," the authors write. "It is unclear at this time whether there are any interventions that could alter DNA repair capacity and what effect such interventions might have on risk."

In an editorial, Marianne Berwick, Ph.D., M.P.H., of the University of New Mexico in Albuquerque, and Paolo Vineis, M.D., M.P.H., of Imperial College in London and the University of Torino in Italy, discuss the difficulties in designing studies of DNA repair capacity and the need for the development of better laboratory tests for such studies. "When DNA repair capacity can be measured easily and quickly, the scientific community will be able to clearly understand the role of DNA repair capacity in the development of cancer and possibly to develop interventions to reduce cancer incidence and mortality," they write.

Sarah L. Zielinski | EurekAlert!
Further information:
http://www.oupjournals.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>