Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficient DNA repair capacity associated with increased risk of breast cancer

19.01.2005


Deficiencies in the ability of cells to repair damaged DNA are associated with an increased risk of breast cancer, according to a new study in the January 19 issue of the Journal of the National Cancer Institute.



DNA repair is the system of defenses designed to protect the integrity of the genome. Studies have suggested that deficiency in cells’ capacity for DNA repair contributes to the accumulation of DNA damage and accelerates the genetic changes involved in carcinogenesis.

To evaluate whether reduced DNA repair capacity in the nucleotide excision pathway that fixes DNA alterations known as bulky DNA adducts is associated with breast cancer risk, Regina M. Santella, Ph.D., of the Columbia University Mailman School of Public Health in New York, and colleagues analyzed cell lines generated from blood samples taken from pairs of sisters in which one sister had been diagnosed with breast cancer and the other had not.


They found that DNA repair capacity was lower in breast cancer patients than in the control subjects. Deficient DNA repair capacity was associated with a twofold increase in the risk of breast cancer. In addition, when the data were stratified into quartiles of DNA repair capacity, the risk of breast cancer was three times higher among women with the poorest DNA repair capacity compared with those with the highest.

"[T]hese data support the hypothesis that deficient DNA repair capacity is associated with susceptibility to breast cancer and may be a valuable in vitro biomarker to identify high-risk subjects, especially in familial breast cancer families," the authors write. "It is unclear at this time whether there are any interventions that could alter DNA repair capacity and what effect such interventions might have on risk."

In an editorial, Marianne Berwick, Ph.D., M.P.H., of the University of New Mexico in Albuquerque, and Paolo Vineis, M.D., M.P.H., of Imperial College in London and the University of Torino in Italy, discuss the difficulties in designing studies of DNA repair capacity and the need for the development of better laboratory tests for such studies. "When DNA repair capacity can be measured easily and quickly, the scientific community will be able to clearly understand the role of DNA repair capacity in the development of cancer and possibly to develop interventions to reduce cancer incidence and mortality," they write.

Sarah L. Zielinski | EurekAlert!
Further information:
http://www.oupjournals.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>