Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COX-2 levels are elevated in smokers

17.01.2005


Tobacco smoke triggers the production of COX-2, a cellular protein linked to the development and progression of cancer, according to research published in the January 15 issue of the journal Cancer Research.



Tobacco smoke also promoted rapid cellular production of two proteins that initiate an epidermal growth factor receptor (EGFR) driven cascade leading to the production of COX-2, the report stated.

The report by Andrew J. Dannenberg, M.D., director of cancer prevention, Weill Medical College of Cornell University, and colleagues, indicates that smokers produce as much as four times the amount of COX-2 in oral mucosal cells lining their mouths than their non-smoking counterparts.


After observing the increased amount of COX-2 in the oral mucosa of smokers, Dannenberg and his team of collaborating scientists exposed cells in culture to tobacco smoke to define the mechanism underlying smoke-induced elevation of COX-2.

The researchers determined that COX-2 levels were increased due to tobacco smoke induced activation of EGFR, a cell membrane protein also associated with various types of cancer. Tobacco smoke stimulated the oral mucosal cells to rapidly release two proteins that activate the EGFR, initiating a cascade resulting in COX-2 protein production. "In an oral mucosal cell line, tobacco smoke clearly activated the epidermal growth factor receptor. Tobacco smoke caused increased EGFR phosphorylation leading to increased COX-2 production," Dannenberg reported.

"We were able to block the induction of COX-2 with either a small molecule that inhibited EGFR activity or an antibody that prevented ligands from binding to and activating the EGFR. These findings led us to question whether tobacco smoke initiated the process of increasing COX-2 production by first stimulating production of proteins that controlled activity of the EGF receptor," Dannenberg said.

Cells exposed to tobacco smoke increased production of two EGFR ligands, or proteins that bind to and activate the growth factor receptor. Tobacco smoke exposed oral mucosal cells produced more amphiregulin and TGF-alpha, both of which trigger EGFR function. "Cellular release of both of these EGFR ligands occurred quickly after exposure to tobacco smoke," Dannenberg said. These findings appear to be directly relevant to people because increased levels of both proteins were also detected in oral biopsies from smokers. "These results provide new insights into the mechanism by which tobacco smoke causes cancer. Mutations can only occur in proliferating cells and activation of EGFR signaling enhances cell proliferation," Dannenberg said. "These results strengthen the rational for targeting not only COX-2, but also EGFR as approaches for reducing the risk of tobacco-related malignancies of the mouth and throat," Dannenberg said.

Dannenberg investigated the mechanism of tobacco smoke effects on oral mucosa with team of scientists including Dimitrios Moraitis, M.D., Jay O. Boyle, M.D., and Erik G. Cohen, M.D., Memorial Sloan-Kettering Cancer Center, New York, N.Y; Baoheng Du, M.D., Mariana S. De Lorenzo, Ph.D., Babette B. Weksler, M.D., Kotha Subbaramaiah, Ph.D., John F. Carew, M.D., and Nasser K. Altorki, M.D., Weil Medical College of Cornell University, New York, N.Y.; and Levy Kopelovich, Ph.D., National Cancer Institute, Bethesda, M.D.

Russell Vanderboom, Ph.D | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>