Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Found: Missing sequence of the human Y chromosome

17.01.2005


Sequence may contain genes controlling stature and tumor development



Scientists report on Friday in the journal Genome Research that they have successfully cloned and characterized a previously intractable DNA sequence: a 554-kilobase-pair genomic segment near the centromere of the human Y chromosome. This sequence contains eight putatively active genes that could be implicated in sex-associated height differences and gonadal tumor development.

This pericentromeric gap was one of the few holes remaining in the "finished" sequence of the human genome reported last October by the International Human Genome Sequencing Consortium. This "finished" sequence was the culmination of a 13-year effort to elucidate the order and orientation of 2.85 billion basepairs that comprise the human genome. The high-quality sequence spanned more than 99% of the euchromatic (gene-containing) portion of the genome with an accuracy of 99.999%, but despite this accomplishment, substantial sections of chromosomal sequences were still missing.


The Y chromosome, a sex chromosome that is specific to the human male, has posed a particular challenge to researchers attempting to decode its sequence. It contains an extraordinary abundance of repetitive elements, including transposons and tandem arrays of satellite sequences. This highly repetitive, transcriptionally dormant genomic landscape, termed "heterochromatin," defines approximately two-thirds of the Y chromosome, including a section spanning the centromere. Such repetitive sequences, although not recalcitrant to cloning, are laborious to assemble, requiring meticulous analysis of complex repeated sequences.

In this case, the challenge was undertaken by a team of scientists led by Gudrun Rappold, Ph.D., Professor of Human Genetics at the University of Heidelberg in Germany. Their manuscript describing this work, published online today and in the February print issue of Genome Research (www.genome.org), presents the sequencing and analysis of 554 kilobases of previously uncharacterized sequence from the pericentromeric region of the Y chromosome. This sequence contains a 450-kilobase "euchromatic island" with eight presumably active genes flanked by repetitive satellite sequences.

To ensure that this 554-kilobase sequence was in fact missing from the "finished" human genome sequence and was not a structural polymorphism present only in a subset of males in the human population, members of Rappold’s laboratory – including Stefan Kirsch, Ph.D., lead author on the paper – tested 100 men of different ethnic origin for the presence of this 554-kilobase fragment. Indeed, the sequence was present in all 100 individuals tested, but not in any female controls, confirming that this sequence was a fundamental part of the Y chromosome.

More surprising, however, was Rappold’s finding that this "missing" sequence was not unique to the Y chromosome. Rather, this sequence exhibited between 95-99% homology to sequences on exactly half (11 of 22) of the other chromosomes in the human genome, including the pericentromeric regions of autosomes (non-sex chromosomes) 1, 2, 3, 4, 9, 10, 11, 14, 15, 16, and 22. This remarkable similarity can be attributed to segmental duplications, a phenomenon whereby large portions of the genome are copied during evolution. Segmental duplications, which emerged during the past 30 million years of primate evolution, are significantly enriched in subtelomeric and pericentromeric sequences, and now comprise approximately 5% of the human genome, were considered to be one of the biggest obstacles to finishing the human genome sequence. "The identification of these segmental duplications suggests an underrepresentation of pericentromeric regions of the acrocentric chromosomes in the current human genome sequence," Rappold pointed out.

The current study was designed as part of a long-term effort to characterize the molecular genetic basis for Y-chromosome-linked phenotypes. Rappold and colleagues had previously physically mapped the GCY locus, which is thought to be the genetic determinant of sex-related stature differences in humans and is in close proximity to the Y centromere. In addition, the GBY, or gonadoblastoma locus, which is responsible for development of tumors associated with the undifferentiated gonad, has been genetically mapped to the region. Because the "missing" sequence described in this study contained eight putatively active genes, further functional testing of these genes may reveal insights into the genetic basis for stature and gonadoblastoma.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>