Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Found: Missing sequence of the human Y chromosome

17.01.2005


Sequence may contain genes controlling stature and tumor development



Scientists report on Friday in the journal Genome Research that they have successfully cloned and characterized a previously intractable DNA sequence: a 554-kilobase-pair genomic segment near the centromere of the human Y chromosome. This sequence contains eight putatively active genes that could be implicated in sex-associated height differences and gonadal tumor development.

This pericentromeric gap was one of the few holes remaining in the "finished" sequence of the human genome reported last October by the International Human Genome Sequencing Consortium. This "finished" sequence was the culmination of a 13-year effort to elucidate the order and orientation of 2.85 billion basepairs that comprise the human genome. The high-quality sequence spanned more than 99% of the euchromatic (gene-containing) portion of the genome with an accuracy of 99.999%, but despite this accomplishment, substantial sections of chromosomal sequences were still missing.


The Y chromosome, a sex chromosome that is specific to the human male, has posed a particular challenge to researchers attempting to decode its sequence. It contains an extraordinary abundance of repetitive elements, including transposons and tandem arrays of satellite sequences. This highly repetitive, transcriptionally dormant genomic landscape, termed "heterochromatin," defines approximately two-thirds of the Y chromosome, including a section spanning the centromere. Such repetitive sequences, although not recalcitrant to cloning, are laborious to assemble, requiring meticulous analysis of complex repeated sequences.

In this case, the challenge was undertaken by a team of scientists led by Gudrun Rappold, Ph.D., Professor of Human Genetics at the University of Heidelberg in Germany. Their manuscript describing this work, published online today and in the February print issue of Genome Research (www.genome.org), presents the sequencing and analysis of 554 kilobases of previously uncharacterized sequence from the pericentromeric region of the Y chromosome. This sequence contains a 450-kilobase "euchromatic island" with eight presumably active genes flanked by repetitive satellite sequences.

To ensure that this 554-kilobase sequence was in fact missing from the "finished" human genome sequence and was not a structural polymorphism present only in a subset of males in the human population, members of Rappold’s laboratory – including Stefan Kirsch, Ph.D., lead author on the paper – tested 100 men of different ethnic origin for the presence of this 554-kilobase fragment. Indeed, the sequence was present in all 100 individuals tested, but not in any female controls, confirming that this sequence was a fundamental part of the Y chromosome.

More surprising, however, was Rappold’s finding that this "missing" sequence was not unique to the Y chromosome. Rather, this sequence exhibited between 95-99% homology to sequences on exactly half (11 of 22) of the other chromosomes in the human genome, including the pericentromeric regions of autosomes (non-sex chromosomes) 1, 2, 3, 4, 9, 10, 11, 14, 15, 16, and 22. This remarkable similarity can be attributed to segmental duplications, a phenomenon whereby large portions of the genome are copied during evolution. Segmental duplications, which emerged during the past 30 million years of primate evolution, are significantly enriched in subtelomeric and pericentromeric sequences, and now comprise approximately 5% of the human genome, were considered to be one of the biggest obstacles to finishing the human genome sequence. "The identification of these segmental duplications suggests an underrepresentation of pericentromeric regions of the acrocentric chromosomes in the current human genome sequence," Rappold pointed out.

The current study was designed as part of a long-term effort to characterize the molecular genetic basis for Y-chromosome-linked phenotypes. Rappold and colleagues had previously physically mapped the GCY locus, which is thought to be the genetic determinant of sex-related stature differences in humans and is in close proximity to the Y centromere. In addition, the GBY, or gonadoblastoma locus, which is responsible for development of tumors associated with the undifferentiated gonad, has been genetically mapped to the region. Because the "missing" sequence described in this study contained eight putatively active genes, further functional testing of these genes may reveal insights into the genetic basis for stature and gonadoblastoma.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>