Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds more than one-third of human genome regulated by RNA


For many years, DNA and proteins have been viewed as the real movers and shakers in genomic studies, with RNA seen as little more than a messenger that shuttles information between the two. But researchers from Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology have discovered that small RNA molecules called microRNAs regulate thousands of human genes--more than one third of the genome’s protein-coding regions. In other words, a class of molecule once relegated to the sidelines may be one of the principal players in regulating cellular mechanisms.

"It’s exciting to see how many genes are regulated by microRNAs. We now know that this type of gene control is much more widespread than previously appreciated," says Whitehead Member and MIT professor of biology David Bartel.

MicroRNAs interrupt a gene’s ability to make protein. These tiny, single-stranded pieces of RNA are newcomers to biological research. It wasn’t until 2000 that researchers even knew that microRNAs existed in humans. Now, in the January 14 edition of the journal Cell, Benjamin Lewis, a graduate student working jointly with Whitehead’s Bartel and MIT associate professor of biology Christopher Burge, provides the first evidence that microRNAs influence a large percentage of life’s functions.

The team developed a computational method to define the relationship between microRNAs and their target genes. In December 2003, the same group identified 400 genes in the human genome targeted by microRNAs. (Prior to this study, there were no known microRNA targets in any vertebrate.)

In their latest paper, taking advantage of the most recent genome-sequencing data, the team has compared human genome data with that of the dog, chicken, mouse, and rat. For each of the microRNAs and protein-coding genes that are common to these five species, the team looked for correspondence between the microRNAs and the protein-coding genes. They discovered that regulation of a third of these genes has been preserved since the last common ancestor of mammals and chicken, which lived 310 million years ago. "This study is an excellent example of the power of comparative genomics to illuminate how human genes are regulated," says Burge. "As more genome data becomes available and the technology becomes more sophisticated, I think we’ll find that even more genes are targeted by microRNAs," predicts Lewis. In addition, the team discovered some hints about how microRNAs find their targets.

To produce a protein, the cell first makes a template for that protein by constructing a molecule called messenger RNA. MicroRNAs inhibit protein production by associating themselves with particular messenger RNAs, thereby reducing the amount of protein that’s ultimately produced. In this study, the researchers determined which portion of the microRNA is most important for this process, and identified additional determinants in the messenger RNA that are likely to contribute to recognition by microRNAs.

These findings contribute to the recent interest in potential therapeutic uses of RNA. For example, using a technique known as RNA interference, or RNAi, researchers are shutting off genes by delivering into cells artificial microRNA-like molecules called siRNAs. RNAi has already transformed how many labs are investigating gene functions, and siRNAs are being developed for clinical applications. Learning more about how microRNAs operate in human cells should help scientists to understand how best to exploit siRNAs for treating disease.

David Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>