Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds more than one-third of human genome regulated by RNA

17.01.2005


For many years, DNA and proteins have been viewed as the real movers and shakers in genomic studies, with RNA seen as little more than a messenger that shuttles information between the two. But researchers from Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology have discovered that small RNA molecules called microRNAs regulate thousands of human genes--more than one third of the genome’s protein-coding regions. In other words, a class of molecule once relegated to the sidelines may be one of the principal players in regulating cellular mechanisms.



"It’s exciting to see how many genes are regulated by microRNAs. We now know that this type of gene control is much more widespread than previously appreciated," says Whitehead Member and MIT professor of biology David Bartel.

MicroRNAs interrupt a gene’s ability to make protein. These tiny, single-stranded pieces of RNA are newcomers to biological research. It wasn’t until 2000 that researchers even knew that microRNAs existed in humans. Now, in the January 14 edition of the journal Cell, Benjamin Lewis, a graduate student working jointly with Whitehead’s Bartel and MIT associate professor of biology Christopher Burge, provides the first evidence that microRNAs influence a large percentage of life’s functions.


The team developed a computational method to define the relationship between microRNAs and their target genes. In December 2003, the same group identified 400 genes in the human genome targeted by microRNAs. (Prior to this study, there were no known microRNA targets in any vertebrate.)

In their latest paper, taking advantage of the most recent genome-sequencing data, the team has compared human genome data with that of the dog, chicken, mouse, and rat. For each of the microRNAs and protein-coding genes that are common to these five species, the team looked for correspondence between the microRNAs and the protein-coding genes. They discovered that regulation of a third of these genes has been preserved since the last common ancestor of mammals and chicken, which lived 310 million years ago. "This study is an excellent example of the power of comparative genomics to illuminate how human genes are regulated," says Burge. "As more genome data becomes available and the technology becomes more sophisticated, I think we’ll find that even more genes are targeted by microRNAs," predicts Lewis. In addition, the team discovered some hints about how microRNAs find their targets.

To produce a protein, the cell first makes a template for that protein by constructing a molecule called messenger RNA. MicroRNAs inhibit protein production by associating themselves with particular messenger RNAs, thereby reducing the amount of protein that’s ultimately produced. In this study, the researchers determined which portion of the microRNA is most important for this process, and identified additional determinants in the messenger RNA that are likely to contribute to recognition by microRNAs.

These findings contribute to the recent interest in potential therapeutic uses of RNA. For example, using a technique known as RNA interference, or RNAi, researchers are shutting off genes by delivering into cells artificial microRNA-like molecules called siRNAs. RNAi has already transformed how many labs are investigating gene functions, and siRNAs are being developed for clinical applications. Learning more about how microRNAs operate in human cells should help scientists to understand how best to exploit siRNAs for treating disease.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>