Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking small: Texas A&M team creates lab-on-a-chip

17.01.2005


Imagine an entire chemistry laboratory reduced to the size of a postage stamp. It could happen.



While others may think big, Texas A&M University physicists Don Naugle and co-worker Igor Lyuksyutov are thinking small - as in micro small. They have successfully managed to levitate micron-sized fluids using magnets, which could lead to new advances in medicine, chemistry, chemical engineering and other related fields. By using small magnets on a postage-stamp sized chip, Naugle and Lyuksyutov have managed to move and merge tiny levitating droplets and crystals and to control the orientation of the levitating crystals.

The droplets used were as small as bacteria or 100 times smaller than a human hair, and up to one billion times smaller in volume than has been demonstrated by conventional methods. Their work was recently published in Applied Physics Letter and featured in several science journals. Their research is funded by The Robert A. Welch Foundation and National Science Foundation grants. "It might be possible to do the same thing with a large number of fluids, chemicals or even a virus," Naugle explains.


"The Texas A&M team has managed to move and levitate several substances, including alcohol solutions, oils, some types of powders and even red blood cells and bacteria. It could be theoretically possible to reduce an entire chemistry lab to a few postage-stamp sized chips. "Try to picture individual chemical beakers (droplets) being merged into other chemical beakers. That’s the principal involved here."

Naugle calls the method a "lab on a chip" and says the possibilities are exciting. "The lab-on-a-chip device levitates and manipulates diamagnetic objects, which are very weakly repelled by magnets," he notes. "These include living tissue and other objects and substances you don’t think of as being magnetic."

The new procedures could be applied to other fields, he believes. "Though it has taken several years to achieve the droplet levitation process, we need to see if we can make progress with manipulating DNA, nanotubes and other things using both magnetic and electric fields. It would be exciting to see if we could precisely transport levitating nanotubes into predefined positions on a silicon chip. This could open up even more doors for future research."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>