Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Thinking small: Texas A&M team creates lab-on-a-chip


Imagine an entire chemistry laboratory reduced to the size of a postage stamp. It could happen.

While others may think big, Texas A&M University physicists Don Naugle and co-worker Igor Lyuksyutov are thinking small - as in micro small. They have successfully managed to levitate micron-sized fluids using magnets, which could lead to new advances in medicine, chemistry, chemical engineering and other related fields. By using small magnets on a postage-stamp sized chip, Naugle and Lyuksyutov have managed to move and merge tiny levitating droplets and crystals and to control the orientation of the levitating crystals.

The droplets used were as small as bacteria or 100 times smaller than a human hair, and up to one billion times smaller in volume than has been demonstrated by conventional methods. Their work was recently published in Applied Physics Letter and featured in several science journals. Their research is funded by The Robert A. Welch Foundation and National Science Foundation grants. "It might be possible to do the same thing with a large number of fluids, chemicals or even a virus," Naugle explains.

"The Texas A&M team has managed to move and levitate several substances, including alcohol solutions, oils, some types of powders and even red blood cells and bacteria. It could be theoretically possible to reduce an entire chemistry lab to a few postage-stamp sized chips. "Try to picture individual chemical beakers (droplets) being merged into other chemical beakers. That’s the principal involved here."

Naugle calls the method a "lab on a chip" and says the possibilities are exciting. "The lab-on-a-chip device levitates and manipulates diamagnetic objects, which are very weakly repelled by magnets," he notes. "These include living tissue and other objects and substances you don’t think of as being magnetic."

The new procedures could be applied to other fields, he believes. "Though it has taken several years to achieve the droplet levitation process, we need to see if we can make progress with manipulating DNA, nanotubes and other things using both magnetic and electric fields. It would be exciting to see if we could precisely transport levitating nanotubes into predefined positions on a silicon chip. This could open up even more doors for future research."

Keith Randall | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>