Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The simple truth: Animal development not as complicated as it seems

14.01.2005


Professor Ricardo Azevedo’s research on the simplicity of cell lineages explained in Nature magazine



Shedding light upon evolution, a University of Houston professor studying cell lineages now finds surprising simplicity in the logic of animal development. Ricardo Azevedo, an assistant professor in the department of biology and biochemistry, specializes in how evolution changes the way animals develop. His recent findings using computational biology to reveal the surprisingly simple patterns of cell division in the embryos of small invertebrates is described in a paper titled "The Simplicity of Metazoan Cell Lineages," appearing in the current issue of Nature, the weekly scientific journal for biological and physical sciences research.

"The significance of my findings is that these cell lineages are not as complicated as many scientists have thus far believed," Azevedo said. "Our hope is that our approach of treating development as a computer program will help developmental biologists to analyze their favorite organisms."


Since we now understand much about how genes evolve, the attention of biologists like Azevedo has shifted toward elucidating the evolution of developmental mechanisms in the hope of unraveling how evolution modifies more complicated and, therefore, more interesting traits like body size, aging or behavior.

Azevedo and his colleagues constructed an algorithm to contrast the developmental complexity of different organisms based on their sequences of cell divisions, known in the trade as cell lineages. They compared the known cell lineages of three different nematode worms and a sea squirt with those randomly generated by a computer program. They found that the real embryos did not behave like the computer-generated ones, but instead showed that these organisms took fewer "different steps" to fully mature than predicted by chance. In other words, the development of these animals is simpler than it looks.

"It’s particularly noteworthy that all four organisms showed the same pattern," Azevedo said. "The sea squirt, a chordate, has a general body plan similar – albeit simplified – to that of humans, while the nematode worms are more distant relatives of ours. Yet, they have all evolved toward a similar level of developmental complexity."

This type of consistency, says Azevedo, may not only impact developmental biology, but also medicine. With humans being made up of trillions of cells, cell lineage analysis has been slower to catch on when compared to the study of the large groups of cells we call organs, such as the liver and the brain. However, research into cancer and stem cells has focused our interest on the behavior of individual cells. The hope is that cell lineage analysis will become more important in the future.

For a copy of the article, visit http://wwworm.biology.uh.edu/publications/azevedo05.pdf.

An evolutionary biologist who joined the UH faculty in 2003, Azevedo received his undergraduate training at the University of Lisbon in Portugal, followed by his doctorate from the University of Edinburgh in Scotland. He conducted his postdoctoral research at Imperial College in London and at the Albert Einstein College of Medicine in New York.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu
http://wwworm.biology.uh.edu/publications/azevedo05.pdf.

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>