Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research turning up the heat on fowl bacteria

14.01.2005


Finding how the fowl-borne bacteria Campylobacter jejuni makes at least a million Americans miserable for a week each year is on the plates of two Medical College of Georgia microbiologists.



Raw and undercooked poultry and meat, raw milk and untreated water are sources for Campylobacter, the most common bacterial cause of diarrhea in the United States, according the U.S. Public Health Service.

But finding how these bacteria that happily co-exist with chickens and turkeys burrow their way into intestinal cells to eat and make people sick in the process should provide direction on how to stop them, say Drs. Stuart A. Thompson and Christopher M. Burns. "The basic problem with Campylobacter is that we don’t know how it causes disease," says Dr. Thompson, who recently received his third National Institutes of Health grant to answer this question and develop a vaccine. "To understand how to treat a bacterium, you have to understand how it causes disease."


He and Dr. Burns, co-principal investigator on the latest grant, are learning that the mindless microorganism is an incredibly skilled survivor. "What we are working on is one of the basic mechanisms of any bacterial disease: that bacteria regulate their own genes in order to cause whatever disease process they cause," says Dr. Thompson. "Bacteria exploit their hosts to live." And the human body is ripe for picking. "Think about it, inside human cells are tons of goodies, all kinds of sugars and other elements. If bacteria can get there, cause the cells and tissue to become inflamed, cells starts releasing all these nutrients and the bacteria have things to eat. In fact, bacteria don’t want to kill a host because then they run out of nutrients."

All this exploitation requires being responsive to the environment. "Organisms can sense where they are in people and respond by changing their gene expression so they are making the right proteins for the environment they happen to be in," says Dr. Burns.

The researchers are exploring this exploitation to learn how gene regulation changes. Dr. Burns is using microarray technology to look at gene expression in Campylobacter, which has one of the smallest genomes of any free-living bacteria, a fact that should simplify the search somewhat. Dr. Thompson is using proteomics to look at protein expression patterns of genes. "Mostly it’s trying to work out regulatory pathways," he says.

As an example, temperature, which can regulate some protein expression, may play a role in why Campylobacter live harmlessly in normally warm chickens and makes cooler humans sick. In looking at proteins turned off and on in chickens and people, Dr. Thompson zeroed in on one called CJ1461 that is turned on in people. The "wild hope" he had that this unusual protein was involved in gene regulation appears to a reality.

When the researchers disabled the protein, gene regulation went haywire, Dr. Thompson says. "So we have hit on something that affects a large number of different processes in the cells. The genome of Campylobacter had been sequenced so CJ1461 was known, but there was only an educated guess as to what it did. What it appears to be is a DNA methylase, which means it adds methyl groups to DNA to somehow change gene regulation," says Dr. Thompson. "One of the things that we are finding is that CJ1461 controls how the cell can swim," says Dr. Thompson. "Campylobacter have little tails called flagella so they can swim, and their ability to swim is critical for getting where they need to go."

One place Campylobacter want to go is to the intestinal wall where they can get inside cells, eat and hide from the immune system. But they have to work hard to get there, including swimming through the thick mucus constantly being shed by the gut. CJ1461 is involved in the gene regulation necessary to produce much-needed tails for the task. The protein also appears to affect the bacteria’s ability to take up iron, which is scarce and necessary for life.

CJ1461 also seems to work as a lifesaver for Campylobacter by helping the bacteria survive oxygen radicals released by the immune system when it sees the invaders. These oxygen radicals also prompt the intestinal inflammatory response that makes people sick.

Symptoms include diarrhea, cramping, abdominal pain and fever; in the worst-case scenarios, which are fortunately rare, people develop Guillain-Barre’ syndrome, a paralysis-inducing autoimmune response to a bacterial or viral infection.

Drs. Burns and Thompson hope their studies will help identify targets for better treatments for the disease and ultimately a vaccine to prevent it.

In the meantime, they encourage consumers to cook poultry products thoroughly and carefully wash their hands, pots, utensils, counters and anything else that comes in contact with raw poultry.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu
http://www.fightbac.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>