Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clam Embryo Study Shows Pollutant Mixture Adversely Affects Nerve Cell Development


A scientist at the Marine Biological Laboratory (MBL) has published the results of an EPA-funded clam embryo study that supports her hypothesis that, when combined, the pollutants bromoform, chloroform, and tetrachloroethylene—a chemical cocktail known as BCE—can act synergistically to alter a key regulator in nerve cell development. While scientists have previously studied the effects of these pollutants individually, this is the first time anyone has demonstrated that BCE’s components can work together to adversely affect neuron growth in a model organism.

The study, which is reported in the January 2005 issue of Environmental Toxicology and Pharmacology, is the first step toward understanding how exposure to BCE might affect human nerve cell development—knowledge that may one day provide clues about such neurological mysteries as autism spectrum disorder or attention deficit hyperactivity disorder.

To test her hypothesis, MBL scientist Carol Reinisch and her colleagues treated developing surf clam embryos (Spisula solidissima) with different combinations of BCE and studied their effects on nerve cell growth. “On a cellular level, clam neurons are extremely useful in studying basic mechanisms of cell development,” says Reinisch, an expert in PCB-induced neurotoxicity.

“Of the different combinations and strengths of BCE components tested, we found that all three together induce the greatest adverse response. Treating the embryos with the triple mixture resulted in increased production of a subunit of an enzyme called protein kinase A (PKA), which previous research suggests plays a role in neural development,” says Reinisch. “Fluctuations in PKA may influence not only neuronal maturation but also how neuronal networks are constructed during development,” she says. Alterations of this enzyme may affect neural development and neural connections by activating or inactivating other proteins.

Demonstrating that clam embryos are affected by BCE paves the way for additional studies that may help explain how exposure to BCE affects human nerve cell development and how it might relate to neurological disorders. “We can clearly state that we found an increase in a component of PKA, and PKA is known to be involved in neural development. The BCE mixture is capable of altering neural development, and alterations in neural development are thought to be a cause of autism,” says Jill Kreiling, first author of the paper and a member of Reinisch’s lab. But Kreiling cautions, “We cannot say at this time if the alteration we see in clam embryos is the same alteration that causes autism. That will require future research.”

In fact, Reinisch and Kreiling have already begun the next phase of their work. They are currently examining the origins of BCE toxicity at the single-neuron level to learn what genes are turned on and off by the exposure to the chemical mixture. The research is focused on a family of genes known as P53, which helps to regulate the cell cycle. They have also moved their studies to a new model system: the zebrafish, a vertebrate with more similarities to humans.

Reinisch’s work on BCE is funded by a STAR grant from the United States Environmental Protection Agency. Science supported by the STAR program is rigorously peer reviewed.

Pamela Clapp Hinkle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

How plants conquer the world

28.10.2016 | Life Sciences

Novel light sources made of 2D materials

28.10.2016 | Physics and Astronomy

More VideoLinks >>>