Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clam Embryo Study Shows Pollutant Mixture Adversely Affects Nerve Cell Development

14.01.2005


A scientist at the Marine Biological Laboratory (MBL) has published the results of an EPA-funded clam embryo study that supports her hypothesis that, when combined, the pollutants bromoform, chloroform, and tetrachloroethylene—a chemical cocktail known as BCE—can act synergistically to alter a key regulator in nerve cell development. While scientists have previously studied the effects of these pollutants individually, this is the first time anyone has demonstrated that BCE’s components can work together to adversely affect neuron growth in a model organism.



The study, which is reported in the January 2005 issue of Environmental Toxicology and Pharmacology, is the first step toward understanding how exposure to BCE might affect human nerve cell development—knowledge that may one day provide clues about such neurological mysteries as autism spectrum disorder or attention deficit hyperactivity disorder.

To test her hypothesis, MBL scientist Carol Reinisch and her colleagues treated developing surf clam embryos (Spisula solidissima) with different combinations of BCE and studied their effects on nerve cell growth. “On a cellular level, clam neurons are extremely useful in studying basic mechanisms of cell development,” says Reinisch, an expert in PCB-induced neurotoxicity.


“Of the different combinations and strengths of BCE components tested, we found that all three together induce the greatest adverse response. Treating the embryos with the triple mixture resulted in increased production of a subunit of an enzyme called protein kinase A (PKA), which previous research suggests plays a role in neural development,” says Reinisch. “Fluctuations in PKA may influence not only neuronal maturation but also how neuronal networks are constructed during development,” she says. Alterations of this enzyme may affect neural development and neural connections by activating or inactivating other proteins.

Demonstrating that clam embryos are affected by BCE paves the way for additional studies that may help explain how exposure to BCE affects human nerve cell development and how it might relate to neurological disorders. “We can clearly state that we found an increase in a component of PKA, and PKA is known to be involved in neural development. The BCE mixture is capable of altering neural development, and alterations in neural development are thought to be a cause of autism,” says Jill Kreiling, first author of the paper and a member of Reinisch’s lab. But Kreiling cautions, “We cannot say at this time if the alteration we see in clam embryos is the same alteration that causes autism. That will require future research.”

In fact, Reinisch and Kreiling have already begun the next phase of their work. They are currently examining the origins of BCE toxicity at the single-neuron level to learn what genes are turned on and off by the exposure to the chemical mixture. The research is focused on a family of genes known as P53, which helps to regulate the cell cycle. They have also moved their studies to a new model system: the zebrafish, a vertebrate with more similarities to humans.

Reinisch’s work on BCE is funded by a STAR grant from the United States Environmental Protection Agency. Science supported by the STAR program is rigorously peer reviewed.

Pamela Clapp Hinkle | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>