Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clam Embryo Study Shows Pollutant Mixture Adversely Affects Nerve Cell Development

14.01.2005


A scientist at the Marine Biological Laboratory (MBL) has published the results of an EPA-funded clam embryo study that supports her hypothesis that, when combined, the pollutants bromoform, chloroform, and tetrachloroethylene—a chemical cocktail known as BCE—can act synergistically to alter a key regulator in nerve cell development. While scientists have previously studied the effects of these pollutants individually, this is the first time anyone has demonstrated that BCE’s components can work together to adversely affect neuron growth in a model organism.



The study, which is reported in the January 2005 issue of Environmental Toxicology and Pharmacology, is the first step toward understanding how exposure to BCE might affect human nerve cell development—knowledge that may one day provide clues about such neurological mysteries as autism spectrum disorder or attention deficit hyperactivity disorder.

To test her hypothesis, MBL scientist Carol Reinisch and her colleagues treated developing surf clam embryos (Spisula solidissima) with different combinations of BCE and studied their effects on nerve cell growth. “On a cellular level, clam neurons are extremely useful in studying basic mechanisms of cell development,” says Reinisch, an expert in PCB-induced neurotoxicity.


“Of the different combinations and strengths of BCE components tested, we found that all three together induce the greatest adverse response. Treating the embryos with the triple mixture resulted in increased production of a subunit of an enzyme called protein kinase A (PKA), which previous research suggests plays a role in neural development,” says Reinisch. “Fluctuations in PKA may influence not only neuronal maturation but also how neuronal networks are constructed during development,” she says. Alterations of this enzyme may affect neural development and neural connections by activating or inactivating other proteins.

Demonstrating that clam embryos are affected by BCE paves the way for additional studies that may help explain how exposure to BCE affects human nerve cell development and how it might relate to neurological disorders. “We can clearly state that we found an increase in a component of PKA, and PKA is known to be involved in neural development. The BCE mixture is capable of altering neural development, and alterations in neural development are thought to be a cause of autism,” says Jill Kreiling, first author of the paper and a member of Reinisch’s lab. But Kreiling cautions, “We cannot say at this time if the alteration we see in clam embryos is the same alteration that causes autism. That will require future research.”

In fact, Reinisch and Kreiling have already begun the next phase of their work. They are currently examining the origins of BCE toxicity at the single-neuron level to learn what genes are turned on and off by the exposure to the chemical mixture. The research is focused on a family of genes known as P53, which helps to regulate the cell cycle. They have also moved their studies to a new model system: the zebrafish, a vertebrate with more similarities to humans.

Reinisch’s work on BCE is funded by a STAR grant from the United States Environmental Protection Agency. Science supported by the STAR program is rigorously peer reviewed.

Pamela Clapp Hinkle | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>