Researchers map genome of deadly fungus

SLU scientist spearheaded multi-center effort

Following a long-term collaborative effort, scientists have deciphered the genomes of two strains of a fungus that can lead to brain swelling and death in those with compromised immune systems. Results were published at 2 p.m. Jan. 13 in the online “express” version of the journal Science: http://www.sciencemag.org/sciencexpress/recent.shtml

The fungus, which causes severe inflammation of the brain, is called Cryptococcus neoformans (C. neoformans). It is estimated that about 15 percent of people with HIV will suffer at least one life-threatening infection; the figure may reach as high as 40 percent in Africa. Those taking chemotherapy drugs, steroid treatments or drugs to prevent rejection of a transplanted organ also are susceptible to infection.

Jennifer Lodge, Ph.D., a biochemist and associate dean of research at Saint Louis University School of Medicine, was head of the steering committee for the Cryptococcus Genome Project – a group formed in 1999 to map the genome of two common strains of this fungus. “This research will be an enormous factor in developing treatments for C. neoformans infection, which is a major problem for those with compromised immune systems,” Lodge said. “We’ve discovered several unique attributes that point to new ways to attack the fungus and cure infection.”

For instance, the C. neoformans develops a unique polysaccharide capsule that envelops the fungus and aids in biosynthesis. Because the study identified about 30 new genes that likely are involved in this process, scientists now could find ways to interfere with the process and stop infection. Researchers also identified differences between a highly virulent strain of C. neoformans and one that doesn’t cause severe infection. These differences may hold the key to understanding why this particular fungus is so virulent and may help to develop effective treatments. “These are just two of several exciting areas of research that now are open to scientists,” Lodge said.

Brendan Loftus, a scientist at The Institute for Genomic Research (TIGR), was the first author of the paper. TIGR scientists led by primary investigator Claire M. Fraser, the President of TIGR, deciphered the genome of one strain of C. neoformans while researchers led by Richard Hyman at Stanford University’s Genome Technology Center in Palo Alto, CA, sequenced the second strain.

The project was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Numerous collaborators helped to interpret and analyze the genome sequence data, including Maureen Donlin, Ph.D., research assistant professor of biochemistry at Saint Louis University School of Medicine.

Other St. Louis scientists who participated in the research include Washington University researchers Tamara Doering, Ph.D., Michael Brent, Ph.D. and Aaron Tenney.

Media Contact

Matt Shaw EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors