Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map genome of deadly fungus

14.01.2005


SLU scientist spearheaded multi-center effort



Following a long-term collaborative effort, scientists have deciphered the genomes of two strains of a fungus that can lead to brain swelling and death in those with compromised immune systems. Results were published at 2 p.m. Jan. 13 in the online "express" version of the journal Science: http://www.sciencemag.org/sciencexpress/recent.shtml

The fungus, which causes severe inflammation of the brain, is called Cryptococcus neoformans (C. neoformans). It is estimated that about 15 percent of people with HIV will suffer at least one life-threatening infection; the figure may reach as high as 40 percent in Africa. Those taking chemotherapy drugs, steroid treatments or drugs to prevent rejection of a transplanted organ also are susceptible to infection.


Jennifer Lodge, Ph.D., a biochemist and associate dean of research at Saint Louis University School of Medicine, was head of the steering committee for the Cryptococcus Genome Project – a group formed in 1999 to map the genome of two common strains of this fungus. "This research will be an enormous factor in developing treatments for C. neoformans infection, which is a major problem for those with compromised immune systems," Lodge said. "We’ve discovered several unique attributes that point to new ways to attack the fungus and cure infection."

For instance, the C. neoformans develops a unique polysaccharide capsule that envelops the fungus and aids in biosynthesis. Because the study identified about 30 new genes that likely are involved in this process, scientists now could find ways to interfere with the process and stop infection. Researchers also identified differences between a highly virulent strain of C. neoformans and one that doesn’t cause severe infection. These differences may hold the key to understanding why this particular fungus is so virulent and may help to develop effective treatments. "These are just two of several exciting areas of research that now are open to scientists," Lodge said.

Brendan Loftus, a scientist at The Institute for Genomic Research (TIGR), was the first author of the paper. TIGR scientists led by primary investigator Claire M. Fraser, the President of TIGR, deciphered the genome of one strain of C. neoformans while researchers led by Richard Hyman at Stanford University’s Genome Technology Center in Palo Alto, CA, sequenced the second strain.

The project was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Numerous collaborators helped to interpret and analyze the genome sequence data, including Maureen Donlin, Ph.D., research assistant professor of biochemistry at Saint Louis University School of Medicine.

Other St. Louis scientists who participated in the research include Washington University researchers Tamara Doering, Ph.D., Michael Brent, Ph.D. and Aaron Tenney.

Matt Shaw | EurekAlert!
Further information:
http://www.slu.edu
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>