Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map genome of deadly fungus

14.01.2005


SLU scientist spearheaded multi-center effort



Following a long-term collaborative effort, scientists have deciphered the genomes of two strains of a fungus that can lead to brain swelling and death in those with compromised immune systems. Results were published at 2 p.m. Jan. 13 in the online "express" version of the journal Science: http://www.sciencemag.org/sciencexpress/recent.shtml

The fungus, which causes severe inflammation of the brain, is called Cryptococcus neoformans (C. neoformans). It is estimated that about 15 percent of people with HIV will suffer at least one life-threatening infection; the figure may reach as high as 40 percent in Africa. Those taking chemotherapy drugs, steroid treatments or drugs to prevent rejection of a transplanted organ also are susceptible to infection.


Jennifer Lodge, Ph.D., a biochemist and associate dean of research at Saint Louis University School of Medicine, was head of the steering committee for the Cryptococcus Genome Project – a group formed in 1999 to map the genome of two common strains of this fungus. "This research will be an enormous factor in developing treatments for C. neoformans infection, which is a major problem for those with compromised immune systems," Lodge said. "We’ve discovered several unique attributes that point to new ways to attack the fungus and cure infection."

For instance, the C. neoformans develops a unique polysaccharide capsule that envelops the fungus and aids in biosynthesis. Because the study identified about 30 new genes that likely are involved in this process, scientists now could find ways to interfere with the process and stop infection. Researchers also identified differences between a highly virulent strain of C. neoformans and one that doesn’t cause severe infection. These differences may hold the key to understanding why this particular fungus is so virulent and may help to develop effective treatments. "These are just two of several exciting areas of research that now are open to scientists," Lodge said.

Brendan Loftus, a scientist at The Institute for Genomic Research (TIGR), was the first author of the paper. TIGR scientists led by primary investigator Claire M. Fraser, the President of TIGR, deciphered the genome of one strain of C. neoformans while researchers led by Richard Hyman at Stanford University’s Genome Technology Center in Palo Alto, CA, sequenced the second strain.

The project was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Numerous collaborators helped to interpret and analyze the genome sequence data, including Maureen Donlin, Ph.D., research assistant professor of biochemistry at Saint Louis University School of Medicine.

Other St. Louis scientists who participated in the research include Washington University researchers Tamara Doering, Ph.D., Michael Brent, Ph.D. and Aaron Tenney.

Matt Shaw | EurekAlert!
Further information:
http://www.slu.edu
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>