Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map genome of deadly fungus

14.01.2005


SLU scientist spearheaded multi-center effort



Following a long-term collaborative effort, scientists have deciphered the genomes of two strains of a fungus that can lead to brain swelling and death in those with compromised immune systems. Results were published at 2 p.m. Jan. 13 in the online "express" version of the journal Science: http://www.sciencemag.org/sciencexpress/recent.shtml

The fungus, which causes severe inflammation of the brain, is called Cryptococcus neoformans (C. neoformans). It is estimated that about 15 percent of people with HIV will suffer at least one life-threatening infection; the figure may reach as high as 40 percent in Africa. Those taking chemotherapy drugs, steroid treatments or drugs to prevent rejection of a transplanted organ also are susceptible to infection.


Jennifer Lodge, Ph.D., a biochemist and associate dean of research at Saint Louis University School of Medicine, was head of the steering committee for the Cryptococcus Genome Project – a group formed in 1999 to map the genome of two common strains of this fungus. "This research will be an enormous factor in developing treatments for C. neoformans infection, which is a major problem for those with compromised immune systems," Lodge said. "We’ve discovered several unique attributes that point to new ways to attack the fungus and cure infection."

For instance, the C. neoformans develops a unique polysaccharide capsule that envelops the fungus and aids in biosynthesis. Because the study identified about 30 new genes that likely are involved in this process, scientists now could find ways to interfere with the process and stop infection. Researchers also identified differences between a highly virulent strain of C. neoformans and one that doesn’t cause severe infection. These differences may hold the key to understanding why this particular fungus is so virulent and may help to develop effective treatments. "These are just two of several exciting areas of research that now are open to scientists," Lodge said.

Brendan Loftus, a scientist at The Institute for Genomic Research (TIGR), was the first author of the paper. TIGR scientists led by primary investigator Claire M. Fraser, the President of TIGR, deciphered the genome of one strain of C. neoformans while researchers led by Richard Hyman at Stanford University’s Genome Technology Center in Palo Alto, CA, sequenced the second strain.

The project was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Numerous collaborators helped to interpret and analyze the genome sequence data, including Maureen Donlin, Ph.D., research assistant professor of biochemistry at Saint Louis University School of Medicine.

Other St. Louis scientists who participated in the research include Washington University researchers Tamara Doering, Ph.D., Michael Brent, Ph.D. and Aaron Tenney.

Matt Shaw | EurekAlert!
Further information:
http://www.slu.edu
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>