Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Medical Researchers Discover Molecular Pathway That Turns a Juvenile Heart into an Adult Heart

14.01.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered the molecular sequence of events in mice that turn a juvenile heart into an adult heart capable of responding to increased workloads.


Xu et al./Cell



Published as the cover story in the January 14, 2005 issue of the journal Cell, the study identifies a protein called ASF/SF2 as a regulator of a calcium enzyme responsible for heart contraction and tissue growth. Mice born with mutated or absent ASF/SF2 had shortened contractive fiber that appeared locked in a contracted state, leading to sudden death. When ASF/SF2 was normal, heart development progressed normally.

“The cascade of molecular events that we have uncovered are directly relevant to understanding heart physiology during development, and may provide insights into mechanisms that directly contribute to heart attacks in humans,” said the study’s senior author, Xiang-Dong Fu, Ph.D., a UCSD professor of Cellular and Molecular Medicine.


ASF/SF2 are part of a family of proteins that function in a vital cellular process called alternative splicing – the mechanism through which a single gene can generate several kinds of proteins by selecting different combinations of the same set of amino acid building blocks. Alternative splicing occurs at all stages of development, including the period of transition from juvenile to adult life, when many tissues and organs, such as the heart, become mature. Although alternative splicing is widely known, little is understood about how this process occurs in mammals. In a “Preview” appearing in the January 14, 2005 issue of Cell, Thomas A. Cooper of the Departments of Pathology and Molecular and Cellular Biology at Baylor College of Medicine in Houston, noted that the results by Fu’s team “highlight the huge potential and largely unexplored role for alternative splicing during vertebrate development.”

The UCSD researchers used mouse models and sophisticated laboratory procedures in their studies. Mice developed without ASF/SF2 appeared normal at birth, but developed a notable decrease in heart contraction as they neared adulthood. Examining the contractile apparatus in the mutant heart, the investigators found striking structural defects, including shortened contractile tissue called sarcomeres and altered ridges in heart tissue. Follow-up functional studies at the single cell level uncovered a marked alteration in calcium handling, which is a major regulatory function for muscle contraction. Additional findings pointed to an increase in the expression of genes related to excessive cardiac tissue growth (hypertrophy) and fiber growth (fibrosis), which are indicators of a heart condition called dilated cardiomyopathy.

Interestingly, the researchers also found differences in male versus female mice. The male animals experienced greater disease and died earlier than the females with mutated ASF/SF2.

The UCSD study was funded by the National Institutes of Health (NIH). Additional authors were Xiangdong Xu, B.S., UCSD Department of Cellular and Molecular Medicine, and Dongmei Yang, Ph.D., National Institute on Aging, NIH, co-first authors; and Jian-Hua Ding, Ph.D., Huan-You Wang, Ph.D., Zhen Ye, B.S., UCSD Department of Cellular and Molecular Medicine; Wang Wang, Ph.D., Rui-Ping Xiao, Ph.D., and Heping Cheng, Ph.D., National Institute on Aging, NIH; Pao-Hsien Chu, Ph.D., Nancy D. Dalton, B.S. and Ju Chen, Ph.D., UCSD Department of Medicine and Institute of Molecular Medicine; John R. Bermingham, Jr. Ph.D., Forrest Liu, B.S. and Michael G. Rosenfeld, M.D., UCSD Department of Medicine and Howard Hughes Medical Institute; and James L. Manley, Ph.D., Department of Biological Sciences, Columbia University, New York.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>