Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Medical Researchers Discover Molecular Pathway That Turns a Juvenile Heart into an Adult Heart

14.01.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered the molecular sequence of events in mice that turn a juvenile heart into an adult heart capable of responding to increased workloads.


Xu et al./Cell



Published as the cover story in the January 14, 2005 issue of the journal Cell, the study identifies a protein called ASF/SF2 as a regulator of a calcium enzyme responsible for heart contraction and tissue growth. Mice born with mutated or absent ASF/SF2 had shortened contractive fiber that appeared locked in a contracted state, leading to sudden death. When ASF/SF2 was normal, heart development progressed normally.

“The cascade of molecular events that we have uncovered are directly relevant to understanding heart physiology during development, and may provide insights into mechanisms that directly contribute to heart attacks in humans,” said the study’s senior author, Xiang-Dong Fu, Ph.D., a UCSD professor of Cellular and Molecular Medicine.


ASF/SF2 are part of a family of proteins that function in a vital cellular process called alternative splicing – the mechanism through which a single gene can generate several kinds of proteins by selecting different combinations of the same set of amino acid building blocks. Alternative splicing occurs at all stages of development, including the period of transition from juvenile to adult life, when many tissues and organs, such as the heart, become mature. Although alternative splicing is widely known, little is understood about how this process occurs in mammals. In a “Preview” appearing in the January 14, 2005 issue of Cell, Thomas A. Cooper of the Departments of Pathology and Molecular and Cellular Biology at Baylor College of Medicine in Houston, noted that the results by Fu’s team “highlight the huge potential and largely unexplored role for alternative splicing during vertebrate development.”

The UCSD researchers used mouse models and sophisticated laboratory procedures in their studies. Mice developed without ASF/SF2 appeared normal at birth, but developed a notable decrease in heart contraction as they neared adulthood. Examining the contractile apparatus in the mutant heart, the investigators found striking structural defects, including shortened contractile tissue called sarcomeres and altered ridges in heart tissue. Follow-up functional studies at the single cell level uncovered a marked alteration in calcium handling, which is a major regulatory function for muscle contraction. Additional findings pointed to an increase in the expression of genes related to excessive cardiac tissue growth (hypertrophy) and fiber growth (fibrosis), which are indicators of a heart condition called dilated cardiomyopathy.

Interestingly, the researchers also found differences in male versus female mice. The male animals experienced greater disease and died earlier than the females with mutated ASF/SF2.

The UCSD study was funded by the National Institutes of Health (NIH). Additional authors were Xiangdong Xu, B.S., UCSD Department of Cellular and Molecular Medicine, and Dongmei Yang, Ph.D., National Institute on Aging, NIH, co-first authors; and Jian-Hua Ding, Ph.D., Huan-You Wang, Ph.D., Zhen Ye, B.S., UCSD Department of Cellular and Molecular Medicine; Wang Wang, Ph.D., Rui-Ping Xiao, Ph.D., and Heping Cheng, Ph.D., National Institute on Aging, NIH; Pao-Hsien Chu, Ph.D., Nancy D. Dalton, B.S. and Ju Chen, Ph.D., UCSD Department of Medicine and Institute of Molecular Medicine; John R. Bermingham, Jr. Ph.D., Forrest Liu, B.S. and Michael G. Rosenfeld, M.D., UCSD Department of Medicine and Howard Hughes Medical Institute; and James L. Manley, Ph.D., Department of Biological Sciences, Columbia University, New York.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>