Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Medical Researchers Discover Molecular Pathway That Turns a Juvenile Heart into an Adult Heart

14.01.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered the molecular sequence of events in mice that turn a juvenile heart into an adult heart capable of responding to increased workloads.


Xu et al./Cell



Published as the cover story in the January 14, 2005 issue of the journal Cell, the study identifies a protein called ASF/SF2 as a regulator of a calcium enzyme responsible for heart contraction and tissue growth. Mice born with mutated or absent ASF/SF2 had shortened contractive fiber that appeared locked in a contracted state, leading to sudden death. When ASF/SF2 was normal, heart development progressed normally.

“The cascade of molecular events that we have uncovered are directly relevant to understanding heart physiology during development, and may provide insights into mechanisms that directly contribute to heart attacks in humans,” said the study’s senior author, Xiang-Dong Fu, Ph.D., a UCSD professor of Cellular and Molecular Medicine.


ASF/SF2 are part of a family of proteins that function in a vital cellular process called alternative splicing – the mechanism through which a single gene can generate several kinds of proteins by selecting different combinations of the same set of amino acid building blocks. Alternative splicing occurs at all stages of development, including the period of transition from juvenile to adult life, when many tissues and organs, such as the heart, become mature. Although alternative splicing is widely known, little is understood about how this process occurs in mammals. In a “Preview” appearing in the January 14, 2005 issue of Cell, Thomas A. Cooper of the Departments of Pathology and Molecular and Cellular Biology at Baylor College of Medicine in Houston, noted that the results by Fu’s team “highlight the huge potential and largely unexplored role for alternative splicing during vertebrate development.”

The UCSD researchers used mouse models and sophisticated laboratory procedures in their studies. Mice developed without ASF/SF2 appeared normal at birth, but developed a notable decrease in heart contraction as they neared adulthood. Examining the contractile apparatus in the mutant heart, the investigators found striking structural defects, including shortened contractile tissue called sarcomeres and altered ridges in heart tissue. Follow-up functional studies at the single cell level uncovered a marked alteration in calcium handling, which is a major regulatory function for muscle contraction. Additional findings pointed to an increase in the expression of genes related to excessive cardiac tissue growth (hypertrophy) and fiber growth (fibrosis), which are indicators of a heart condition called dilated cardiomyopathy.

Interestingly, the researchers also found differences in male versus female mice. The male animals experienced greater disease and died earlier than the females with mutated ASF/SF2.

The UCSD study was funded by the National Institutes of Health (NIH). Additional authors were Xiangdong Xu, B.S., UCSD Department of Cellular and Molecular Medicine, and Dongmei Yang, Ph.D., National Institute on Aging, NIH, co-first authors; and Jian-Hua Ding, Ph.D., Huan-You Wang, Ph.D., Zhen Ye, B.S., UCSD Department of Cellular and Molecular Medicine; Wang Wang, Ph.D., Rui-Ping Xiao, Ph.D., and Heping Cheng, Ph.D., National Institute on Aging, NIH; Pao-Hsien Chu, Ph.D., Nancy D. Dalton, B.S. and Ju Chen, Ph.D., UCSD Department of Medicine and Institute of Molecular Medicine; John R. Bermingham, Jr. Ph.D., Forrest Liu, B.S. and Michael G. Rosenfeld, M.D., UCSD Department of Medicine and Howard Hughes Medical Institute; and James L. Manley, Ph.D., Department of Biological Sciences, Columbia University, New York.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/
http://www.ucsd.edu

More articles from Life Sciences:

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates
21.02.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>