Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Medical Researchers Discover Molecular Pathway That Turns a Juvenile Heart into an Adult Heart

14.01.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered the molecular sequence of events in mice that turn a juvenile heart into an adult heart capable of responding to increased workloads.


Xu et al./Cell



Published as the cover story in the January 14, 2005 issue of the journal Cell, the study identifies a protein called ASF/SF2 as a regulator of a calcium enzyme responsible for heart contraction and tissue growth. Mice born with mutated or absent ASF/SF2 had shortened contractive fiber that appeared locked in a contracted state, leading to sudden death. When ASF/SF2 was normal, heart development progressed normally.

“The cascade of molecular events that we have uncovered are directly relevant to understanding heart physiology during development, and may provide insights into mechanisms that directly contribute to heart attacks in humans,” said the study’s senior author, Xiang-Dong Fu, Ph.D., a UCSD professor of Cellular and Molecular Medicine.


ASF/SF2 are part of a family of proteins that function in a vital cellular process called alternative splicing – the mechanism through which a single gene can generate several kinds of proteins by selecting different combinations of the same set of amino acid building blocks. Alternative splicing occurs at all stages of development, including the period of transition from juvenile to adult life, when many tissues and organs, such as the heart, become mature. Although alternative splicing is widely known, little is understood about how this process occurs in mammals. In a “Preview” appearing in the January 14, 2005 issue of Cell, Thomas A. Cooper of the Departments of Pathology and Molecular and Cellular Biology at Baylor College of Medicine in Houston, noted that the results by Fu’s team “highlight the huge potential and largely unexplored role for alternative splicing during vertebrate development.”

The UCSD researchers used mouse models and sophisticated laboratory procedures in their studies. Mice developed without ASF/SF2 appeared normal at birth, but developed a notable decrease in heart contraction as they neared adulthood. Examining the contractile apparatus in the mutant heart, the investigators found striking structural defects, including shortened contractile tissue called sarcomeres and altered ridges in heart tissue. Follow-up functional studies at the single cell level uncovered a marked alteration in calcium handling, which is a major regulatory function for muscle contraction. Additional findings pointed to an increase in the expression of genes related to excessive cardiac tissue growth (hypertrophy) and fiber growth (fibrosis), which are indicators of a heart condition called dilated cardiomyopathy.

Interestingly, the researchers also found differences in male versus female mice. The male animals experienced greater disease and died earlier than the females with mutated ASF/SF2.

The UCSD study was funded by the National Institutes of Health (NIH). Additional authors were Xiangdong Xu, B.S., UCSD Department of Cellular and Molecular Medicine, and Dongmei Yang, Ph.D., National Institute on Aging, NIH, co-first authors; and Jian-Hua Ding, Ph.D., Huan-You Wang, Ph.D., Zhen Ye, B.S., UCSD Department of Cellular and Molecular Medicine; Wang Wang, Ph.D., Rui-Ping Xiao, Ph.D., and Heping Cheng, Ph.D., National Institute on Aging, NIH; Pao-Hsien Chu, Ph.D., Nancy D. Dalton, B.S. and Ju Chen, Ph.D., UCSD Department of Medicine and Institute of Molecular Medicine; John R. Bermingham, Jr. Ph.D., Forrest Liu, B.S. and Michael G. Rosenfeld, M.D., UCSD Department of Medicine and Howard Hughes Medical Institute; and James L. Manley, Ph.D., Department of Biological Sciences, Columbia University, New York.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>