Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New network of gastrointestinal immune cells discovered

14.01.2005


Findings could lead to new vaccines and antibacterial strategies

A previously unknown network of immune cells has been discovered in the mammalian gastrointestinal system by a research group based in the Center for the Study of Inflammatory Bowel Diseases at Massachusetts General Hospital (MGH). The finding, reported in the January 14 issue of Science, could lead to better understanding of how the immune system recognizes and responds to dangerous bacteria and viruses and to new approaches to immunization and infectious disease treatment.

"We found an extensive system of immune cells throughout the intestinal tract that take up bacteria and other antigens, giving us a new target for understanding the immune response," says Hans-Christian Reinecker, MD, of the MGH Gastrointestinal Unit, the study’s senior author.



The investigation focused on dendritic cells which are found in tissues in direct contact with the external environment, such as the skin, lungs and digestive system. Characterized by long extensions called dendrites, dendritic cells continually sample their environment for bacteria and viruses. When dendritic cells encounter pathogens, they ingest them, break them down and then transport protein fragments to the cellular membrane. On the cells’ surface the fragments are displayed to other immune system cells, which will recognize the proteins as antigens to be destroyed.

Exactly how dendritic cells monitor intestinal contents and recognize harmful organisms was unknown, and learning more about that process was a goal of the current study. The researchers conducted several experiments using genetically altered mice in which one or both copies of a gene required for cell migration and dendrite formation was replaced with a gene that produces a fluorescent protein. Examination of the animals’ tissues revealed populations of dendritic cells throughout the small intestine in a layer just below the epithelial lining. It previously had been believed that gastrointestinal dendritic cells were few in number and restricted to specialized immune organs called Peyer’s patches.

Three-dimensional computer-assisted tissue reconstruction allowed detailed microscopic examination of the intestinal tissues, which showed that dendrites extend from the dendritic cells through the epithelial layer, giving them direct access to intestinal contents. In animals without the gene required for normal dendrite growth – which produces a receptor protein – dendrites formed but did not penetrate the epithelium. Dendritic cells without access to the interior of the intestine were not able to carry out one of their normal functions, taking up the harmless strains of E. coli that normally populate the intestine and transporting them to lymph nodes.

Introduction of disease-causing salmonella bacteria into the gastrointestinal system of both groups of mice revealed that the receptor-negative animals, whose dendritic cells could not effectively sample intestinal contents, were unable to mount an effective immune defense and developed extensive salmonella infection.

"This is a new way for the immune system in the gastrointestinal tract to monitor and interact with the environment," says Reinecker, an assistant professor of Medicine at Harvard Medical School. "Insights into these mechanisms could lead to better understanding of conditions such as Crohn’s Disease and ulcerative colitis, intestinal infections and food allergy. Targeting these dendritic cells also could help us develop new types of vaccines. And it’s possible that some of the gastrointestinal bacteria and viruses that cause serious illness may co-opt the activity of these cells to enter the body and bypass some immune defenses."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>