Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Nature paper, scientists at U.Va. health system crack part of ’histone’ code

13.01.2005


Little is known about the specific role of histones - the protein ’spool’ around which the famous DNA double helix is folded.
Now, researchers at the University of Virginia Health System have unraveled one mystery about what histones accomplish in the complex chemical cascade that determines the function of a cell in the body. Their findings are published in the Jan. 12, 2005 online edition of the journal Nature.

Scientists at U.Va’s Department of Biochemistry and Molecular Genetics discovered that a previously known protein called Chd1 recognizes a flag (or code) on histones and physically binds to a certain mark (a methylation mark.) The protein Chd1 then attracts a huge complex of other proteins, called SAGA, that can turn genes on in the cell nucleus.


"This is a good example of how proteins respond to the histone code," explained study senior author Patrick Grant, PhD, an Assistant Professor of Biochemistry and Molecular Genetics at U.Va. "There is a theory, proposed by Dr David Allis at Rockefeller University and Dr Brian Strahl at the University of North Carolina, that DNA does not function in isolation. Rather, its’ function can be dictated by this modification of histones, which can determine whether DNA is exposed and accessible or not. This takes us one step closer to understanding how chemical information carried on histones, rather than DNA, is recognized and read during the regulation of genes."

Chd1 mutation has been linked to a rare neurological disease called CHARGE syndrome that causes birth defects, including eye abnormalities, facial palsy and swallowing problems, blocked nasal passages, heart defects and delayed development. Already, Grant and his colleagues are working in the lab on a project involving the role of SAGA proteins in another rare neurological disorder called spinal cerebellar ataxia type 7 that causes neurodegeneration and blindness. Grant believes that Chd1 and SAGA interaction may be vital for normal brain development and function.

Grant said that, until his discovery, there have been very few proteins identified that recognize these methylation marks on histones. He said information has recently emerged about how genes can be turned off by histone methylation and how abnormal chemical modification of histones may underlie the formation of certain cancers. "This research adds important knowledge to our understanding of how cells signal to turn genes on," Grant said.

Contributors to the research in Nature with Grant were Marilyn G. Pray-Grant and Jeremy A. Daniel, both of the Department of Biochemistry and Molecular Genetics at U.Va. and scientists at the Diversa Corp. and the Scripps Research Institute. January 12, 2005

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>