Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Nature paper, scientists at U.Va. health system crack part of ’histone’ code

13.01.2005


Little is known about the specific role of histones - the protein ’spool’ around which the famous DNA double helix is folded.
Now, researchers at the University of Virginia Health System have unraveled one mystery about what histones accomplish in the complex chemical cascade that determines the function of a cell in the body. Their findings are published in the Jan. 12, 2005 online edition of the journal Nature.

Scientists at U.Va’s Department of Biochemistry and Molecular Genetics discovered that a previously known protein called Chd1 recognizes a flag (or code) on histones and physically binds to a certain mark (a methylation mark.) The protein Chd1 then attracts a huge complex of other proteins, called SAGA, that can turn genes on in the cell nucleus.


"This is a good example of how proteins respond to the histone code," explained study senior author Patrick Grant, PhD, an Assistant Professor of Biochemistry and Molecular Genetics at U.Va. "There is a theory, proposed by Dr David Allis at Rockefeller University and Dr Brian Strahl at the University of North Carolina, that DNA does not function in isolation. Rather, its’ function can be dictated by this modification of histones, which can determine whether DNA is exposed and accessible or not. This takes us one step closer to understanding how chemical information carried on histones, rather than DNA, is recognized and read during the regulation of genes."

Chd1 mutation has been linked to a rare neurological disease called CHARGE syndrome that causes birth defects, including eye abnormalities, facial palsy and swallowing problems, blocked nasal passages, heart defects and delayed development. Already, Grant and his colleagues are working in the lab on a project involving the role of SAGA proteins in another rare neurological disorder called spinal cerebellar ataxia type 7 that causes neurodegeneration and blindness. Grant believes that Chd1 and SAGA interaction may be vital for normal brain development and function.

Grant said that, until his discovery, there have been very few proteins identified that recognize these methylation marks on histones. He said information has recently emerged about how genes can be turned off by histone methylation and how abnormal chemical modification of histones may underlie the formation of certain cancers. "This research adds important knowledge to our understanding of how cells signal to turn genes on," Grant said.

Contributors to the research in Nature with Grant were Marilyn G. Pray-Grant and Jeremy A. Daniel, both of the Department of Biochemistry and Molecular Genetics at U.Va. and scientists at the Diversa Corp. and the Scripps Research Institute. January 12, 2005

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>