Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weill Cornell team develops fast-acting anthrax vaccine

13.01.2005


Gene transfer technique immunizes mice within 12 hours



Using gene transfer technology, investigators were able to immunize mice against anthrax in just 12 hours, according to new research featured in the February 2005 issue of Molecular Therapy, the peer-reviewed scientific journal of the American Society of Gene Therapy (ASGT).

In any bioterror attack, vaccines that provide a rapid, effective defense against the pathogen will be key to saving lives. Research underway at Weill Cornell Medical College in New York City may provide health officials with a much quicker option than vaccines currently available, which can take weeks or months to gain full effect. "This research is important, because in the event of an attack, it may not be known whether another attack is coming -- or who might be affected. In that case, you want immunity to be built up in key populations as quickly as possible," said Dr. Ronald G. Crystal, Chairman of the Department of Genetic Medicine, Weill Cornell Medical College and Chief of the Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center.


Vaccines tend to fall into one of two groups -- active vaccines, where the body is prompted over time to build up antibodies against specific threats; and passive vaccines, where fully-formed antibodies are delivered to the body in vaccine form. "Because the body continues to produce antibodies, active vaccines last much longer than the passive kind, whose effectiveness tends to diminish over time," Dr. Crystal explained.

But active vaccines have one major drawback: they need lots of time to develop. For example, the anthrax vaccine provided to US Army troops following the 2001 attacks requires that troops receive six doses stretched over 18 months. Populations threatened by the sudden dispersal of deadly anthrax spores won’t have the luxury of that much time. So Cornell researchers turned their attention to faster-acting passive vaccines. "We looked especially at the use of gene transfer technology -- introducing genes that can manufacture antibodies against key components of the anthrax toxin."

Genes need a live means of entering the body, however, so Dr. Crystal’s team incorporated the gene within a harmless organism called an adenovirus. "The adenovirus delivers the gene to the mouse, and then the gene goes to work -- telling the animal’s body to make this antibody against anthrax," Dr. Crystal said.

The study found:

  • Once inside the mouse’s body, the gene began producing an immune-system antibody targeted to a key component of the deadly anthrax toxin.
  • Mice were immune to anthrax within 12 to 18 hours of vaccination, indicating that the gene transfer strategy works very quickly.
  • Passive vaccines might never fully replace active varieties. According to the research, the new vaccine will probably work best when used in combination with an active vaccine.

While gene transfer has been used to deliver antibodies in other clinical settings, "to our knowledge this is the first time it’s been used as a strategy against bioterrorism," Dr. Crystal said.

Many hurdles remain before this type of vaccine might be ready for public use. Dosing issues will be an area of focus. It might also take two or more years of testing in animal models before the vaccine is deemed safe enough to test in humans.

"Passive vaccines like this one can lose their effectiveness over time, whereas active vaccines do not," Dr. Crystal explained. "We’re now developing a strategy where we might give people both the active and passive vaccine. With the passive vaccine you’d get protection that would last a couple of weeks, but that would give you a safety margin while your body is developing more active, long-term immunity."

The research was supported, in part, by a Gift from Robert A. Belfer to Support Development of an Antibioterrorism Vaccine, and by the the Will Rogers Memorial Fund (Los Angeles, CA). Co-researchers included Dr. Kazuhiko Kasuya, Dr. Julie Boyer, and Dr. Yadi Tan, of the Department of Genetic Medicine; and Dr. Neil R. Hackett and D. Olivier Alipui, of the Belfer Gene Therapy Core Faculty, at Weill Medical College of Cornell University.

Sean Kelliher | EurekAlert!
Further information:
http://www.asgt.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>