Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weill Cornell team develops fast-acting anthrax vaccine

13.01.2005


Gene transfer technique immunizes mice within 12 hours



Using gene transfer technology, investigators were able to immunize mice against anthrax in just 12 hours, according to new research featured in the February 2005 issue of Molecular Therapy, the peer-reviewed scientific journal of the American Society of Gene Therapy (ASGT).

In any bioterror attack, vaccines that provide a rapid, effective defense against the pathogen will be key to saving lives. Research underway at Weill Cornell Medical College in New York City may provide health officials with a much quicker option than vaccines currently available, which can take weeks or months to gain full effect. "This research is important, because in the event of an attack, it may not be known whether another attack is coming -- or who might be affected. In that case, you want immunity to be built up in key populations as quickly as possible," said Dr. Ronald G. Crystal, Chairman of the Department of Genetic Medicine, Weill Cornell Medical College and Chief of the Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center.


Vaccines tend to fall into one of two groups -- active vaccines, where the body is prompted over time to build up antibodies against specific threats; and passive vaccines, where fully-formed antibodies are delivered to the body in vaccine form. "Because the body continues to produce antibodies, active vaccines last much longer than the passive kind, whose effectiveness tends to diminish over time," Dr. Crystal explained.

But active vaccines have one major drawback: they need lots of time to develop. For example, the anthrax vaccine provided to US Army troops following the 2001 attacks requires that troops receive six doses stretched over 18 months. Populations threatened by the sudden dispersal of deadly anthrax spores won’t have the luxury of that much time. So Cornell researchers turned their attention to faster-acting passive vaccines. "We looked especially at the use of gene transfer technology -- introducing genes that can manufacture antibodies against key components of the anthrax toxin."

Genes need a live means of entering the body, however, so Dr. Crystal’s team incorporated the gene within a harmless organism called an adenovirus. "The adenovirus delivers the gene to the mouse, and then the gene goes to work -- telling the animal’s body to make this antibody against anthrax," Dr. Crystal said.

The study found:

  • Once inside the mouse’s body, the gene began producing an immune-system antibody targeted to a key component of the deadly anthrax toxin.
  • Mice were immune to anthrax within 12 to 18 hours of vaccination, indicating that the gene transfer strategy works very quickly.
  • Passive vaccines might never fully replace active varieties. According to the research, the new vaccine will probably work best when used in combination with an active vaccine.

While gene transfer has been used to deliver antibodies in other clinical settings, "to our knowledge this is the first time it’s been used as a strategy against bioterrorism," Dr. Crystal said.

Many hurdles remain before this type of vaccine might be ready for public use. Dosing issues will be an area of focus. It might also take two or more years of testing in animal models before the vaccine is deemed safe enough to test in humans.

"Passive vaccines like this one can lose their effectiveness over time, whereas active vaccines do not," Dr. Crystal explained. "We’re now developing a strategy where we might give people both the active and passive vaccine. With the passive vaccine you’d get protection that would last a couple of weeks, but that would give you a safety margin while your body is developing more active, long-term immunity."

The research was supported, in part, by a Gift from Robert A. Belfer to Support Development of an Antibioterrorism Vaccine, and by the the Will Rogers Memorial Fund (Los Angeles, CA). Co-researchers included Dr. Kazuhiko Kasuya, Dr. Julie Boyer, and Dr. Yadi Tan, of the Department of Genetic Medicine; and Dr. Neil R. Hackett and D. Olivier Alipui, of the Belfer Gene Therapy Core Faculty, at Weill Medical College of Cornell University.

Sean Kelliher | EurekAlert!
Further information:
http://www.asgt.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>