Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genome fully mapped for potential biological weapon


The bacterium that causes the severe disease known as rabbit fever, Fancisella tularensis, is a potential biological weapon of devastating force. Now scientists at Umeå, in collaboration with several international associates, have mapped the entire genome of the bacterium.

Researchers at the Swedish Defense Research Agency FOI NBC Defense and Umeå University are part of an international consortium that is now publishing its results in the prestigious journal Nature Genetics. The article is a report from the charting of the complete DNA sequence of the bacterium, so-called sequencing, and the study of the genome of a fully pathogenic strain of Francisella tularensis. The genome consists of nearly 1.9 billion base pairs, among which the scientists have managed to find 1,804 genes.

The functional description of the genome presents the pathogenic properties of the bacterium, including the formation of so-called pili, a type of projection that is used in infecting human cells. Another property described is the ability of the bacterium to absorb iron, a feature that is necessary for the bacterium to be able to bring about disease.

The mapping of the complete genome of Francisella tularensis is an important step forward in our understanding of how this bacterium causes disease in humans, and it will provide a great impetus for future work to create the possibility of protective measures to combat this potential biological weapon, which might be used by states or by terrorists. Japan developed weapons based on the bacterium in the 1930s and 1940s. The U.S. and the Soviet Union did the same thing later. There is some concern that biological weapons containing this bacterium still exist elsewhere in the world.

Rabbit fever is an acute disease that has been known in Sweden since the 1930s. The disease flares up among rodents at intervals of a few years, and the disease can then also infect humans, an example of zoonosis. The infection is normally transmitted by the bite of an anthropod that has previously eaten from an infected animal. An average of one hundred cases of rabbit fever are registered each year in Sweden, and more than 700 cases occurred in 2003.

The bacteria can be transmitted via insects, dust, and, in rare cases, water. The symptoms vary depending on how it was transmitted. Sores, swollen lymph nodes, and pneumonia, accompanied by a high and persistent fever, are characteristic. Ordinary penicillin has no effect on the bacterium, so special antibiotics are required for successful treatment. Without treatment, there is a great risk of complications, although these are not fatal in the Swedish variant of rabbit fever. In North America there is a more aggressive variant of the bacterium, which the sequenced strain belongs to, and there a certain proportion of rabbit fever cases lead to death.

Bertil Born | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>