Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome fully mapped for potential biological weapon

13.01.2005


The bacterium that causes the severe disease known as rabbit fever, Fancisella tularensis, is a potential biological weapon of devastating force. Now scientists at Umeå, in collaboration with several international associates, have mapped the entire genome of the bacterium.



Researchers at the Swedish Defense Research Agency FOI NBC Defense and Umeå University are part of an international consortium that is now publishing its results in the prestigious journal Nature Genetics. The article is a report from the charting of the complete DNA sequence of the bacterium, so-called sequencing, and the study of the genome of a fully pathogenic strain of Francisella tularensis. The genome consists of nearly 1.9 billion base pairs, among which the scientists have managed to find 1,804 genes.

The functional description of the genome presents the pathogenic properties of the bacterium, including the formation of so-called pili, a type of projection that is used in infecting human cells. Another property described is the ability of the bacterium to absorb iron, a feature that is necessary for the bacterium to be able to bring about disease.


The mapping of the complete genome of Francisella tularensis is an important step forward in our understanding of how this bacterium causes disease in humans, and it will provide a great impetus for future work to create the possibility of protective measures to combat this potential biological weapon, which might be used by states or by terrorists. Japan developed weapons based on the bacterium in the 1930s and 1940s. The U.S. and the Soviet Union did the same thing later. There is some concern that biological weapons containing this bacterium still exist elsewhere in the world.

Rabbit fever is an acute disease that has been known in Sweden since the 1930s. The disease flares up among rodents at intervals of a few years, and the disease can then also infect humans, an example of zoonosis. The infection is normally transmitted by the bite of an anthropod that has previously eaten from an infected animal. An average of one hundred cases of rabbit fever are registered each year in Sweden, and more than 700 cases occurred in 2003.

The bacteria can be transmitted via insects, dust, and, in rare cases, water. The symptoms vary depending on how it was transmitted. Sores, swollen lymph nodes, and pneumonia, accompanied by a high and persistent fever, are characteristic. Ordinary penicillin has no effect on the bacterium, so special antibiotics are required for successful treatment. Without treatment, there is a great risk of complications, although these are not fatal in the Swedish variant of rabbit fever. In North America there is a more aggressive variant of the bacterium, which the sequenced strain belongs to, and there a certain proportion of rabbit fever cases lead to death.

Bertil Born | alfa
Further information:
http://www.umu.se

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>