Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers researcher answers fundamental question of cell death

11.01.2005


Chunying Du, Ph.D., Assistant Investigator at the Stowers Institute, has published findings that reveal a previously unknown pathway of Bruce, the gene encoding a protein that inhibits apoptosis, or programmed cell death.



The findings are available online at www.pnas.org/cgi/reprint/0408744102v1 and will be published in the Jan. 18 issue of Proceedings of the National Academy of Sciences (PNAS).

Bruce has long been recognized as an inhibitor of apoptosis, but until now, its method of inhibition was not clear. Dr. Du analyzed Bruce mutant mice and found that Bruce regulates p53, a tumor suppressor gene, and the mitochondrial pathway of apoptosis.


Bruce’s primary function resides upstream of mitochondria. Loss of function of Bruce increases the level of p53, making cells more sensitive to apoptosis. The transcriptional activity of p53 is responsible for the activation of genes including Pidd, Bax, and Bak. These in turn activate mitochondria, leading to apoptosis.

"The identification of Bruce as a regulator of p53 raises the possibility that therapeutic inactivation of Bruce activity could keep p53 levels high to combat certain tumors," said Dr. Du. "On the other hand, over expression of Bruce may help maintain cell survival in neurodegenerative diseases such as Alzheimer’s disease." "Dr. Du’s findings answer a fundamental question of apoptosis and have implications for a wide variety diseases," says Robb Krumlauf, Ph.D., Scientific Director of the Stowers Institute. "These findings are an example of the broad impact of basic research conducted at the Stowers Institute."

Dr. Du joined the Stowers Institute in 2001. She holds B.S. and M.S. degrees from Beijing Normal University, and a Ph.D. from Iowa State University. From 1998 to 2001, she was a Howard Hughes Medical Institute Postdoctoral Fellow with Dr. Xiaodong Wang at the University of Texas Southwestern Medical Center. She currently holds a secondary appointment as an Assistant Professor of Biochemistry and Molecular Biology at the University of Kansas School of Medicine.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org
http://www.pnas.org/cgi/reprint/0408744102v1

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>