Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers researcher answers fundamental question of cell death

11.01.2005


Chunying Du, Ph.D., Assistant Investigator at the Stowers Institute, has published findings that reveal a previously unknown pathway of Bruce, the gene encoding a protein that inhibits apoptosis, or programmed cell death.



The findings are available online at www.pnas.org/cgi/reprint/0408744102v1 and will be published in the Jan. 18 issue of Proceedings of the National Academy of Sciences (PNAS).

Bruce has long been recognized as an inhibitor of apoptosis, but until now, its method of inhibition was not clear. Dr. Du analyzed Bruce mutant mice and found that Bruce regulates p53, a tumor suppressor gene, and the mitochondrial pathway of apoptosis.


Bruce’s primary function resides upstream of mitochondria. Loss of function of Bruce increases the level of p53, making cells more sensitive to apoptosis. The transcriptional activity of p53 is responsible for the activation of genes including Pidd, Bax, and Bak. These in turn activate mitochondria, leading to apoptosis.

"The identification of Bruce as a regulator of p53 raises the possibility that therapeutic inactivation of Bruce activity could keep p53 levels high to combat certain tumors," said Dr. Du. "On the other hand, over expression of Bruce may help maintain cell survival in neurodegenerative diseases such as Alzheimer’s disease." "Dr. Du’s findings answer a fundamental question of apoptosis and have implications for a wide variety diseases," says Robb Krumlauf, Ph.D., Scientific Director of the Stowers Institute. "These findings are an example of the broad impact of basic research conducted at the Stowers Institute."

Dr. Du joined the Stowers Institute in 2001. She holds B.S. and M.S. degrees from Beijing Normal University, and a Ph.D. from Iowa State University. From 1998 to 2001, she was a Howard Hughes Medical Institute Postdoctoral Fellow with Dr. Xiaodong Wang at the University of Texas Southwestern Medical Center. She currently holds a secondary appointment as an Assistant Professor of Biochemistry and Molecular Biology at the University of Kansas School of Medicine.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org
http://www.pnas.org/cgi/reprint/0408744102v1

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>