Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team aims to reduce chemo doses

07.01.2005


MIT biologists report a potential way to decrease the dose of chemotherapeutic agents needed to tackle cancer, a feat that would reduce these agents’ toxic side effects.



What makes cancer cells unique is that they divide at a faster rate than ordinary cells, which makes them susceptible to the action of chemotherapeutic agents. But although chemotherapy is an effective treatment against fast-growing tumors, it is also associated with numerous toxic side effects because it is required at high doses to be effective.

Researchers from MIT’s Center for Cancer Research (CCR) suggest a new approach to achieving the same response using a lower dose of chemotherapy, thereby limiting the harmful side effects of the drugs. Their approach involves making cancer cells even more sensitive to these agents.


In a paper to be published in the January 7, 2005 issue of Molecular Cell, a CCR research team led by Michael Yaffe, the Howard S. and Linda B. Stern Associate Professor of Biology, reports its results showing that blocking the function of the protein MAPKAP Kinase-2 increases the sensitivity of cancer cells to certain types of cancer treatment.

"MAPKAP Kinase-2 had been previously studied and was thought to be primarily involved in inflammation," explains Yaffe, who is also a member of the Department of Surgery at Beth Israel Deaconess Medical Center. "But our work shows that MAPKAP Kinase-2 also integrates DNA damage signaling responses and cell cycle arrest in mammalian cells."

"This result is particularly exciting as several drug companies are already developing MAPKAP Kinase-2 inhibitors for use in inflammation," said Yaffe. "Our hope is that we can use drugs already in development as anti-cancer agents."

Normal cells have a remarkable ability to sense when their DNA has been damaged and will repair the problem before continuing to copy their DNA and divide.

Using RNA interference (RNAi) to inhibit the activity of MAPKAP Kinase-2, Biology graduate student Isaac Manke showed that cells no longer sense DNA damage caused by ultraviolet light. Instead, he found the cells are more sensitive to the killing effects of ultraviolet light and also divide much faster.

"The discovery that MAPKAP Kinase-2 pathway functions to coordinate cell division and the DNA damage repair process is remarkable in its similarity to other pathways involved in the response to other types of DNA damage," said Manke.

In fact, clinical trials are underway to test the effectiveness of combining a drug that blocks the DNA damage response with chemotherapy to see if lower doses of chemotherapeutic agents may be used. The results of this MIT study suggest yet another new approach for improving a patient’s response to chemotherapy.

Other MIT CCR researchers include postdoctoral fellows Daniel Lim and Mary Stewart, former postdoctoral fellow Anhco Nguyen and graduate student Andrew Elia.

Support for this work comes from the Jane Coffin Childs Foundation, the National Institutes of Health and the Burroughs-Wellcome Fund. Manke is supported by a Koch Graduate Fellowship.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>