Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team aims to reduce chemo doses

07.01.2005


MIT biologists report a potential way to decrease the dose of chemotherapeutic agents needed to tackle cancer, a feat that would reduce these agents’ toxic side effects.



What makes cancer cells unique is that they divide at a faster rate than ordinary cells, which makes them susceptible to the action of chemotherapeutic agents. But although chemotherapy is an effective treatment against fast-growing tumors, it is also associated with numerous toxic side effects because it is required at high doses to be effective.

Researchers from MIT’s Center for Cancer Research (CCR) suggest a new approach to achieving the same response using a lower dose of chemotherapy, thereby limiting the harmful side effects of the drugs. Their approach involves making cancer cells even more sensitive to these agents.


In a paper to be published in the January 7, 2005 issue of Molecular Cell, a CCR research team led by Michael Yaffe, the Howard S. and Linda B. Stern Associate Professor of Biology, reports its results showing that blocking the function of the protein MAPKAP Kinase-2 increases the sensitivity of cancer cells to certain types of cancer treatment.

"MAPKAP Kinase-2 had been previously studied and was thought to be primarily involved in inflammation," explains Yaffe, who is also a member of the Department of Surgery at Beth Israel Deaconess Medical Center. "But our work shows that MAPKAP Kinase-2 also integrates DNA damage signaling responses and cell cycle arrest in mammalian cells."

"This result is particularly exciting as several drug companies are already developing MAPKAP Kinase-2 inhibitors for use in inflammation," said Yaffe. "Our hope is that we can use drugs already in development as anti-cancer agents."

Normal cells have a remarkable ability to sense when their DNA has been damaged and will repair the problem before continuing to copy their DNA and divide.

Using RNA interference (RNAi) to inhibit the activity of MAPKAP Kinase-2, Biology graduate student Isaac Manke showed that cells no longer sense DNA damage caused by ultraviolet light. Instead, he found the cells are more sensitive to the killing effects of ultraviolet light and also divide much faster.

"The discovery that MAPKAP Kinase-2 pathway functions to coordinate cell division and the DNA damage repair process is remarkable in its similarity to other pathways involved in the response to other types of DNA damage," said Manke.

In fact, clinical trials are underway to test the effectiveness of combining a drug that blocks the DNA damage response with chemotherapy to see if lower doses of chemotherapeutic agents may be used. The results of this MIT study suggest yet another new approach for improving a patient’s response to chemotherapy.

Other MIT CCR researchers include postdoctoral fellows Daniel Lim and Mary Stewart, former postdoctoral fellow Anhco Nguyen and graduate student Andrew Elia.

Support for this work comes from the Jane Coffin Childs Foundation, the National Institutes of Health and the Burroughs-Wellcome Fund. Manke is supported by a Koch Graduate Fellowship.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>