Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein transformation gives new twist to medical research

07.01.2005


Discovery in Texas has medical implications

It was a transforming moment. Researchers could barely believe their eyes. A molecular blob of a protein reshaped itself into a molecular Pacman in order to free new viruses from the inside of a bacterial cell. It’s the sort of thing where your graduate student tells you the results of an experiment and you say, ’You must have made a mistake,’ said Dr. Ryland Young, Texas Agricultural Experiment Station biochemist. But then, a good scientist has to be prepared at any time for the old rule to be disproved, he added.

And that’s what happens today when Science magazine reports on the protein Lyz found to be capable of turning itself into a completely different structure – a discovery made by Young’s graduate student Min Xu and a team of researchers.



Understanding Lyz could enable medical researchers to design drugs to turn off or on proteins at the cellular level, which could lead to treatment for some of the most difficult to cure diseases such as cancer and HIV.

Lyz is a lysozyme, a protein that degrades the tough cell wall that covers bacterial cells. The name lysozyme means break-out enzyme as coined by Alexander Fleming, who was also the inventor of penicillin. Lysozymes are everywhere, Young noted. They are even in your tears, where they destroy bacteria that try to enter the eye.

But Lyz is made by a virus growing inside the bacterial cell. The virus has to destroy the cell wall, or the virus babies would be trapped inside the dead body of the bacterium. Originally, the group set out to study how the Lyz protein gets outside the cell to break down the cell wall. They were looking for a holin, a protein that makes holes in the cell membrane to let the lysozyme out.

"Using biochemistry and genetics, Min and Doug (Struck, a research assistant) found something completely unexpected," Young said. Lyz was able to get out of the membrane by presenting a part of the protein as a signal, or tether attached to the membrane. Once outside, Lyz completely changes its shape, withdrawing the signal from the membrane and turning into a jaw-like molecule that almost literally chews up the cell wall, thus allowing release of its progeny.

It’s like one of those transformer toys that you twist and they become something quite different from the original in shape and form, noted Sacchettini, whose group worked out the detailed molecular structure of Lyz before and after its shape-shifting. It’s fascinating to know now that the same protein can exist in vastly different states. It’s an academic exercise from which a lot of other interesting work and developments may derive.

Also working with Xu, Young, Sacchettini and Struck on the project were: Dr. Sam Arulandu, a post doctoral researcher, and undergraduate student Stephanie Swanson, a senior from Houston.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>