Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein transformation gives new twist to medical research

07.01.2005


Discovery in Texas has medical implications

It was a transforming moment. Researchers could barely believe their eyes. A molecular blob of a protein reshaped itself into a molecular Pacman in order to free new viruses from the inside of a bacterial cell. It’s the sort of thing where your graduate student tells you the results of an experiment and you say, ’You must have made a mistake,’ said Dr. Ryland Young, Texas Agricultural Experiment Station biochemist. But then, a good scientist has to be prepared at any time for the old rule to be disproved, he added.

And that’s what happens today when Science magazine reports on the protein Lyz found to be capable of turning itself into a completely different structure – a discovery made by Young’s graduate student Min Xu and a team of researchers.



Understanding Lyz could enable medical researchers to design drugs to turn off or on proteins at the cellular level, which could lead to treatment for some of the most difficult to cure diseases such as cancer and HIV.

Lyz is a lysozyme, a protein that degrades the tough cell wall that covers bacterial cells. The name lysozyme means break-out enzyme as coined by Alexander Fleming, who was also the inventor of penicillin. Lysozymes are everywhere, Young noted. They are even in your tears, where they destroy bacteria that try to enter the eye.

But Lyz is made by a virus growing inside the bacterial cell. The virus has to destroy the cell wall, or the virus babies would be trapped inside the dead body of the bacterium. Originally, the group set out to study how the Lyz protein gets outside the cell to break down the cell wall. They were looking for a holin, a protein that makes holes in the cell membrane to let the lysozyme out.

"Using biochemistry and genetics, Min and Doug (Struck, a research assistant) found something completely unexpected," Young said. Lyz was able to get out of the membrane by presenting a part of the protein as a signal, or tether attached to the membrane. Once outside, Lyz completely changes its shape, withdrawing the signal from the membrane and turning into a jaw-like molecule that almost literally chews up the cell wall, thus allowing release of its progeny.

It’s like one of those transformer toys that you twist and they become something quite different from the original in shape and form, noted Sacchettini, whose group worked out the detailed molecular structure of Lyz before and after its shape-shifting. It’s fascinating to know now that the same protein can exist in vastly different states. It’s an academic exercise from which a lot of other interesting work and developments may derive.

Also working with Xu, Young, Sacchettini and Struck on the project were: Dr. Sam Arulandu, a post doctoral researcher, and undergraduate student Stephanie Swanson, a senior from Houston.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>