Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers tease out one critical role of tumor-suppressor gene

07.01.2005


Scientists are taking the first steps to find out how a gene that is mutated in many cancer cells functions in healthy cells.



The researchers hope that learning how this gene, called Rb, operates in health cells will give them a better idea of how cancer develops and progresses. While mutations in Rb, are linked to several types of cancer including the childhood disease retinoblastoma, Rb normally keeps cell division in check. That means Rb is a tumor suppressor gene, which keeps cells from growing out of control. Scientists believe that Rb is linked to two key processes that frequently malfunction when cancer begins – proliferation (cell growth), and apoptosis (cell death). But they don’t know how Rb, which is found in every cell of the body, does this. New findings reported in the December 23 issue of Nature begin to shed light on the gene’s role in cells.

The researchers found that in mice, a lack of Rb during embryonic development kept red blood cells from fully maturing. "While we don’t think this finding has a specific link to cancer development, it is a first step to getting at the basic mechanism of how Rb works," said Gustavo Leone, a study co-author and an assistant professor with the Human Cancer Genetics Program at Ohio State University. "Knowing how Rb works in normal cells could help us to someday understand how tumor-suppressor genes function in tumor development and growth."


Leone was part of a team of researchers led by Antonio Iavarone, a professor with the Institute for Cancer Genetics at Columbia University.

The researchers studied red blood cells and macrophages taken from the liver tissue of mouse embryos bred to lack Rb. Macrophages are scavenger cells -- they eat up foreign material such as bacteria and viruses. In the developing embryo, macrophages bind to red blood cells, and this binding forces red blood cells to lose their nuclei. A mature red blood cell lacks a nucleus.

Leone and his colleagues surmised that the reason why the red blood cells from the embryos without Rb never lost their nuclei was due to a reduction in the number of macrophages in these fetal mouse livers. "Without Rb, the number of mature macrophages in the fetal liver was markedly reduced," said Leone, who is also a geneticist with Ohio State’s Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The researchers identified part of the molecular pathway that may help explain this reduction in mature macrophages: Cells carry a gene called Id2, an inhibitor protein that, in this case, probably kept macrophages from maturing. In a normal cell, it’s thought that Rb counterbalances Id2’s inhibitory effects. Since Id2 went unchecked, macrophages did not fully develop and therefore couldn’t bind to immature red blood cells.

In order to test this idea, the researchers created a mix of embryonic liver cells – some had the Rb gene, while others did not. Interestingly, the red blood cells from the embryos that lacked Rb immediately bound themselves to the Rb-containing macrophages. “This binding restored the red blood cells’ ability to give up their nuclei and, therefore, mature,” Leone said.

Knowing how Rb functions in normal cells could clue scientists in to the gene’s behavior as a tumor suppressor and why it mutates. It could also ultimately help scientists understand how other types of cancer progress. "Cancer cells are altered in so many different ways that it’s hard to conduct controlled experiments with them," Leone said. "That’s why we need to figure out what Rb normally does, as opposed to studying a mutated version of the gene in a cancer cell. This may also help us uncover the mechanisms that cause mutations in other tumor-suppressing genes."

Leone and Iavarone conducted the study with Emerson King and Anna Lasorella, both with Columbia University, and Xu-Ming Dai and E. Richard Stanley, both with the Albert Einstein College of Medicine in New York.

This work was supported by the National Institutes of Health.

Gustavo Leone | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>