Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol and Brain Development

07.01.2005


Holoprosencephaly (HPE) is the most common developmental forebrain anomaly in humans and is caused by the failure of the embryonic forebrain (the prosencephalon) to sufficiently divide into the two lobes of the cerebral hemispheres. The result is a single-lobed brain structure and severe skull and facial defects. About 1 in 250 pregnancies miscarries as a result of severe HPE. In less severe cases, about one in 16,000 babies is born with minor brain developmental and facial deformities that may affect the eyes, nose, and upper lip, such as median cleft lip and palate. HPE has several causes including prenatal viral infections or alcohol abuse during pregnancy. In many cases, a genetic defect in the metabolism of cholesterol results in HPE. Thus, some individuals with HPE are unable to produce cholesterol.

Now, scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch in Germany have been able to show that a gene defect in one of the receptors for cholesterol, the receptor megalin, is responsible for severe damages of the forebrain and holopresencephaly in mice. Megalin is primarily produced by the embryonic tissue which later develops into the central nervous system. These results achieved by Robert Spoelgen, Dr. Annette Hammes, and Uwe Anzenberger of the research group of Professor Thomas Willnow have now been published online by the journal Development; http://dev.biologists.org/cgi/content/full/132/2/405; (January 2005, Vol. 132, Issue 2, pp. 405-414).*

*LRP2/megalin is required for patterning of the ventral telencephalon



Robert Spoelgen*, Annette Hammes*, Uwe Anzenberger*, Dietmar Zechner, Olav M. Andersen, Boris Jerchow and Thomas E. Willnow
Max-Delbrueck-Center for Molecular Medicine, Berlin, 13092, Germany
*Authors contributed equally
Author for correspondence (e-mail: willnow@mdc-berlin.de)

Press and Public Affairs
Max Delbrück Center for Molecular Medicine(MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Str. 10
13125 Berlin
Phone: +49/30/9406-38 96
Fax.: +49/30/9406-38 33
e-mail: bachtler@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>