Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cholesterol and Brain Development


Holoprosencephaly (HPE) is the most common developmental forebrain anomaly in humans and is caused by the failure of the embryonic forebrain (the prosencephalon) to sufficiently divide into the two lobes of the cerebral hemispheres. The result is a single-lobed brain structure and severe skull and facial defects. About 1 in 250 pregnancies miscarries as a result of severe HPE. In less severe cases, about one in 16,000 babies is born with minor brain developmental and facial deformities that may affect the eyes, nose, and upper lip, such as median cleft lip and palate. HPE has several causes including prenatal viral infections or alcohol abuse during pregnancy. In many cases, a genetic defect in the metabolism of cholesterol results in HPE. Thus, some individuals with HPE are unable to produce cholesterol.

Now, scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch in Germany have been able to show that a gene defect in one of the receptors for cholesterol, the receptor megalin, is responsible for severe damages of the forebrain and holopresencephaly in mice. Megalin is primarily produced by the embryonic tissue which later develops into the central nervous system. These results achieved by Robert Spoelgen, Dr. Annette Hammes, and Uwe Anzenberger of the research group of Professor Thomas Willnow have now been published online by the journal Development;; (January 2005, Vol. 132, Issue 2, pp. 405-414).*

*LRP2/megalin is required for patterning of the ventral telencephalon

Robert Spoelgen*, Annette Hammes*, Uwe Anzenberger*, Dietmar Zechner, Olav M. Andersen, Boris Jerchow and Thomas E. Willnow
Max-Delbrueck-Center for Molecular Medicine, Berlin, 13092, Germany
*Authors contributed equally
Author for correspondence (e-mail:

Press and Public Affairs
Max Delbrück Center for Molecular Medicine(MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Str. 10
13125 Berlin
Phone: +49/30/9406-38 96
Fax.: +49/30/9406-38 33

Barbara Bachtler | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>