Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT-led team: viruses change shape to infect us

05.01.2005


The binding of a viral RNA and a viral protein brings about a physical transformation that dupes host cells into enthusiastically copying the invading pathogen, according to a team of researchers from MIT, Harvard, and Harvard Medical School.



In the December 17 issue of Science, collaborators led by Professor Lee Gehrke of the Harvard-MIT Division of Health Sciences and Technology published dramatic three-dimensional images of RNA-protein interactions in alfalfa mosaic virus (AMV), a safe model for investigating single-strand, positive-sense RNA viruses. AMV’s dangerous relatives include flaviviruses that cause dengue fever, Japanese encephalitis and West Nile disease.

Gehrke and other molecular virologists knew that AMV was not infectious unless its genomic RNAs bound viral protein, but the details were unknown. Laura Guogas, a postdoctoral associate in Gehrke’s lab, decided to seek answers with x-ray crystallography.


What Guogas found is "stunning and unexpected," says James Hogle, a Harvard Medical School (HMS) structural biologist and professor of biological chemistry and molecular pharmacology. He and David Filman, also of HMS, contributed to this study.

RNA binding turned the viral coat protein from a floppy coil into a tight, springy helix. The RNA, a smooth strand punctuated by bumpy "hairpin structures," developed a kink that looks like a mountain turn on the Tour de France. The researchers attribute this kink to the formation of additional links between the two sides of the hairpins, another surprise from the three-dimensional structure. RNA and protein fold together in a way that locks them into place.

This distinctive, stable structure turns one end of the viral RNA into a handsome stranger. "It sticks out like a beacon compared with other RNAs in the cell," says Gehrke, who proposes that the host cell’s replicating enzyme "jumps right on" and begins making more copies of the infecting virus.

Ordinarily, the translation of the viral RNAs into protein is triggered by a string of a particular RNA building block, adenosine, at one end of a typical RNA, a so-called "poly-A tail" that flaviviruses lack. AMV substitutes the striking RNA-protein complex that Guogas identified; other viruses in the family probably form different structures that make the ends of their RNA attractive to the cell’s translation and replicating machinery.

Future research will look for ways to translate differences between cellular and flavivirus RNAs into vaccines and treatments for dengue fever, West Nile virus, and similar infections. The researchers hope to build on the synergy between biochemistry and structural biology demonstrated by Guogas’s study. "This project is a great example of the role a talented student can play in a collaboration between two labs with complementary interests and expertise," says Hogle.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>