Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Protein Discovered By Hebrew University Researchers Holds Promise For Use In Medicine And Nanoscience

05.01.2005


Researchers at the Hebrew University of Jerusalem have succeeded in discovering and isolating a new protein from the poplar tree with special structural and qualitative characteristics that could have consequences for development of future nanocapsules for drug delivery to cancer cells.


"Bagel-shaped" SP-1 protein



In addition to being obtained from plant tissue, the protein can now also be produced in large quantities as a recombinant protein in bacteria, making it highly available for medicinal or other applications.

Called SP-1, the protein has a nanometric, “bagel-shaped,” circular form and is extremely stable. It has been found to be capable of surviving contact with enzymes that break down proteins or exposure to extreme conditions such as boiling, excessive acidity, salinity, organic solvents or detergent solutions.


The research was conducted at the Hebrew University’s Faculty of Agricultural, Food and Environmental Quality Sciences in Rehovot by Prof. Arie Altman, head of the faculty’s Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, and Prof. Oded Shoseyov, with the participation of Dr. Wangxia Wang and Dr. Dan Pelah and the scientists of Fulcrum SP Ltd.: Dr. Amnon Wolf, Dr. Ira Marton and Dr. Yehonathan Pouny.

According to Profs. Altman and Shoseyov, the SP-1 protein serves to assist in creating a properly folded and functioning structure of other proteins within the plant’s cells. The SP-1 also has the ability to assemble itself into a structure composed of 12 identical units, making it exceptionally resistant to extreme conditions. These qualities are rarely found among proteins and make the SP-1 a promising candidate for a multiplicity of uses in developing medicinal applications in the rapidly growing field of nanobiotechnology.

SP-1 nanocapsules will be capable of delivering cell-destroying drugs specifically to certain types of solid cancer tumors. The protein’s tiny structure enables this carrier to penetrate specifically into tumors without harming healthy tissue and thus enhance the effectiveness of chemotherapy. This selective penetration is based on the fact that the blood vessels which feed tumors are considerably more porous than those reaching healthy cells. Therefore, the units of SP-1 carrying the drug would invade only the tumor-feeding blood vessels and not normal ones.

More recently, the three-dimensional structure of the protein was deciphered by x-ray crystallography in the laboratory of Dr. Orna Almog of Ben-Gurion University of the Negev. The research on this was published in the Journal of Biological Chemistry issue of December 2004, authored by Or Dgany of the Hebrew University, Ana Gonzales of Stanford University, Oshrat Sofer of Ben-Gurion University, Wangxia Wang of the Hebrew University, Gennady Zolotnitsky of the Technion, Amnon Wolf of Fulcrum, Yuval Shoham of the Technion, Arie Altman of the Hebrew University, Sharon G. Wolf of the Weizmann Institute, Oded Shoseyov of the Hebrew University and Orna Almog of Ben-Gurion University.

Professors Altman and Shoseyov are the scientific founders of the biotech start-up company Fulcrum SP Ltd. that is developing the SP-1 protein for cancer drug delivery and other applications.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, tel: 02-588-2904, or Orit Sulitzeanu, Hebrew University spokesperson, tel. 052-2608016.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>