Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human complexity and diversity spring from a surprisingly few (relatively speaking) genes

05.01.2005


The rice genome is larger, but we make the most of what we’ve got

In April 2003, scientists completed the massive Human Genome Project, recording for the first time in history the location and sequence of every gene in the human body. One result of the international project came as a bit of a shock. Scientists discovered that the body has only 30,000 genes, far fewer than the 50,000 to 140,000 they had expected to find.

Moreover, scientists learned that some less complex, less diverse organisms had more, or proportionally more genes than human beings. The rice genome contains 50,000 genes and the fly 14,000, to cite two examples. The lack of correlation between genome size and an organism’s complexity raised a question - how do complexity and diversity arise in higher life forms?



The unexpected finding, says Stefan Maas, necessitates a clearer understanding of the role played in protein diversity by processes that take place after DNA is transcribed to RNA and after RNA is translated to proteins. Maas, an assistant professor of biological sciences, studies RNA editing, a phenomenon discovered in ion channels of the brain a decade ago at the University of Heidelberg in Germany, where Maas earned his Ph.D.

RNA editing involves the process by which cells use their genetic code to manufacture proteins. More specifically, says Maas, RNA editing "describes the posttranscriptional alteration of gene sequences by mechanisms including the deletion, insertion and modification of nucleotides." Nucleotides are compounds that form the basic constituents of DNA and RNA. Often working in tandem with another RNA modification mechanism called alternative splicing, RNA editing, says Maas, can "increase exponentially the number of gene products generated from a single gene."

A greater understanding of RNA editing, scientists believe, might potentially shed light on evolutionary processes and might lead to new strategies for combatting some diseases. In fact, says Maas, scientists have learned that a type of RNA editing called A-to-I editing, which leads to changes in protein structure and function and in gene regulation, regulates crucial functions of neurotransmitter receptors in the brains of mammals.

Disturbances in A-to-I RNA editing have been implicated in several human diseases, such as amyotrophic lateral sclerosis (Lou Gehrig’s Disease), epilepsy and depression. Maas’s group has analyzed brain tumor tissues and tissues from a healthy brain. "RNA editing, because of its effect on the ion channel, is very important for normal brain function," says Maas. "We have found an impairment to RNA editing in malignant brain-tumor tissue. This suggests that epileptic seizures in patients with brain tumors could be caused by an editing deficiency with regard to the channel molecule."

Maas’s research group recently discovered that A-to-I editing, in which adenosine is converted to inosine, is widespread among human genes and occurs frequently in a common genetic sequence known as the Alu repeat. In December, an article written by Maas and his collaborator, Alekos Athanasiadis of M.I.T., titled "Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome," was published by the journal PloS Biology (plosbiology.org). The article culminated two years of study, which began while Maas was at M.I.T., where he worked as a research scientist before joining the Lehigh faculty in 2003.

Maas’s group began their study by looking systematically on the genomic scale for genes that might be subject to A-to-I editing. "One of the major puzzles in the field of RNA editing at that time," he says, "was that only a few genes affected by RNA editing, perhaps two dozen, had been found, all in the brain. Most of them were discovered by serendipity. There was strong evidence that there should be many more affected genes, as many as several thousand, or about 10 percent of all human genes."

To find genes affected by RNA editing, Maas and his colleagues used experimental analysis and computational methods, poring through the databases where sequences of new genes had been deposited. "We used computational sequence analysis to look for the smoking gun of A-to-I editing in these sequences," says Maas. "We looked for any sign that the sequences might be subject to editing. "The sequence and frequency of the Alu element in the human genome are a major factor in why genes undergo RNA editing," says Maas. "If you look at any gene sequence, you find more than one Alu element in the gene, and usually about a dozen."

Scientists estimate that of 100,000 types of RNA molecules so far analyzed computationally, 1,400 are strong candidates for RNA editing. Maas’s group has validated about 50 of these in molecular biological experiments and has concluded that most are indeed affected by RNA editing. The group has also characterized why certain Alu elements are edited and where on the gene sequence the editing is occurring.

For the future, says Maas, "We hope to refine the computational search to be able to identify additional candidate sequences for editing with high certainty. We want to make more precise predictions regarding how a sequence subject to editing should look. "In addition, we want to find out what the consequences of this massive editing are for gene function."

Maas will present his research at the Gordon Research Conference on RNA editing in January in Ventura, Calif.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>