Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for ailing hearts

05.01.2005


Cord blood cells limit heart attack damage in animal study



Stem cells from umbilical cord blood effectively treated heart attacks in an animal study, report cardiologist Robert J. Henning, MD, and colleagues at the University of South Florida and James A. Haley Veterans’ Hospital.

When injected into rats’ hearts soon after a heart attack, stem cells taken from human umbilical cord blood (HUCB) greatly reduced the size of heart damage and restored pumping function to near normal. This improvement occurred without the need for drugs to prevent the rats’ immune system from rejecting the human cells.


The USF study will be published online this week in the journal Cell Transplantation, accompanied by an editorial discussing the progress of stem cell therapy in treating heart attacks, or myocardial infarctions.

If further animal studies and human clinical trials prove equally successful, the USF researchers suggest that stem cells from umbilical cord blood could be a new, widely applicable treatment for limiting or repairing the heart muscle destroyed when the vital organ’s blood supply is cut off. In the United States, nearly one of every 2 men and one of 3 women older than age 40 will suffer a heart attack, leaving them more vulnerable to chronic heart failure or another, potentially fatal, heart attack. Medications and bypass surgery have prolonged the lives of these patients, but many live with heart failure characterized by chronic fatigue and shortness of breath.

"Patients with heart failure due to heart attacks and other causes spend much of their day at home in a chair or in bed. These are the patients whose lives we hope to greatly improve with stem cell therapy to restore heart function," said Dr. Henning, lead author of the study.

"Our initial results are extremely promising, but raise questions about how these umbilical cord blood cells work. Are they transforming into new heart muscle cells or secreting growth factors that trigger the heart to repair itself? We need more research to insure such therapy will ultimately benefit patients with little or no side effects."

"The possibility to regenerate and to restore function of the heart after myocardial infarction with stem cell transplantation holds great promise for treating heart failure," writes David Stern, MD, dean of the Medical College of Georgia, and colleagues in the Cell Transplantation editorial accompanying the USF study. "Additional preclinical animal studies are warranted and should focus on examining the mechanisms that mediate the functional effects of stem cell transplantation."

The USF researchers compared HUBC-treated rats to both untreated rats (those receiving only a sugar water placebo) and control rats with normal hearts. The HUCB stem cells were injected directly into the heart muscle of rats an hour after heart attacks were induced. After four months of recovery, the size of scar tissue left by dead heart muscle was approximately three times smaller in the HUCB treated rats than in the untreated rats. As a result, the heart’s pumping capacity improved to near normal in the treated rats, after an initial decline, and was significantly greater than the cardiac function in the untreated rats with heart attacks.

"Scar tissue does not contract," Dr. Henning said. "Since scar tissue was minimized and more heart muscle remained in the treated rats, their hearts were able to function better as pumps."

The USF work adds to a growing field exploring the potential of stem cells to treat ailing hearts. Animal and human cell transplantation to treat heart attacks has focused primarily on immature cells harvested from adult bone marrow and skeletal muscle – with mixed results.

"Although not as primitive as human embryonic stem cells, stem cells isolated from infant’s cord blood are less mature than those taken from adult bone marrow and skeletal muscle," Dr. Henning said.

"Cord blood stem cells may be more amenable to repairing hearts. In addition, cord blood stem cells are readily accessible, easy to use, and, like adult stem cells, are not as controversial as embryonic stem cells." said coauthor Paul R. Sanberg, PhD, DSc, director of the USF Center of Excellence for Aging and Brain Repair.

The USF study does not define how the HUCB cells reduced acute heart attack damage in the rats, but the researchers continue to search for explanations. The researchers do not discount transdifferentiation -- that HUCB cells transform into functional heart muscle cells to regenerate damaged tissue. However, Dr. Henning suggests, these stem cells instead may release nourishing substances that rally primitive cells within the heart itself to form new blood vessels and muscle.

Other authors of the study were Hamdi Abu-Ali; MD; John Balis, MD; Michael B. Morgan, MD; and Alison E. Willing, PhD. The USF study was supported by the American Heart Association, the Veterans Administration, a Florida Biomedical Research Grant, and Saneron CCEL Therapeutics, Inc., a USF spin-out biotechnology company focusing on developing stem cell therapies for debilitating or deadly diseases. Some study authors are affiliated with Saneron and are co-inventors on related patent applications by USF.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>